

Edge Application Development

Fledge as a Rapid Development Tool
For No-Code Engineers to Python or C/C++ Programmers

Fledge is an open scalable flexible data collection and forwarding platform, collecting data from

any device and forwarding it to any destination. Going far beyond data acquisition, Fledge’s data

processing, filtering, signal processing, and notification services make it a platform that allows

application development using a model of connecting off the shelf components together to

perform complex operations. In addition, a REST API allows the data gathered by Fledge to be

viewed and managed in other applications on the edge, ISA95 systems or clouds.

This paper highlights some of the techniques that can be used to build applications on the edge

either within the Fledge framework itself or by connecting to the API offered by Fledge. Building

no-code applications, provisioning, updating, deleting, configuring, back up, securing and scaling

an industry 4.0 edge using Fledge is done by using FogLAMP Manager. Please read An

Introduction to FogLAMP Manager for more information.

Basic Components of an Industry 4.0 Edge

The 4 physical components of a 4.0 edge are assets, data sources, edge devices and integrations.

Assets are the objects being monitored. Data Sources monitor those assets and create the data

for monitoring those assets. Edge Devices are the compute engines where Fledges are installed

and operate. Integrations are the data destinations generally ISA95 systems and/or the cloud.

The Processing Model

It is important to understand the processing model of Fledge before commencing development of

a new application or data pipeline. The basic flow begins with readings entering Fledge via the

south plugin, getting converted to a common JSON format in the storage layer and exiting via the

north plugin.

Orchestrator

South Service

Event Service Storage Service

North Service

ML/AI

Thresholds

Control

Create Data

External App

Compress

Delta

Conditional

ML/AI

FFT/RMS

Image Class

…

D
ir

e
ct

M
o

d
b

u
s

O
P

C
-U

A

M
Q

TT

H
TT

P
S

C
o

A
P

…

Config Mgmt.

Updates

Monitoring

Scheduling

User Mgmt.

Security

Microservice

Plug Ins

Rest API

R
u

le
s

A
ct

io
n

s

Filters
Filters

R
ES

T
 A

P
I

Set Point
Control Service

O
M

F

G
C

P

O
P

C
-U

A

M
Q

TT

H
TT

P
S

K
af

ka

…

Readings can also be created in a filter pipeline or as a result of a notification. Knowing where in

the lifecycle of a reading traversing through Fledge it may be processed and what off the shelf

facilities exist for processing the data is recommended. These readings then pass through

elements of the Fledge system before eventually being sent north to one or more external systems

or being removed by a filter somewhere within a filter pipeline.

Common Types of Application Pipelines

Data Collection and Processing
● Unit conversion
● Synchronize data
● Signal processing
● Add metadata
● Remove or reduce data
● ML computer vision

Data Analysis and Rules
● Simple thresholds
● Evaluate w/ any algorithm
● ML based anomaly detection
● Events

○ Send Alerts
○ Interact w/ other systems
○ Create derivative data

Simple Pipeline Example

Complex Pipeline Example

Processing on Ingress

In general data enters Fledge via a south service, though there are some exceptions to this that

will be made clear as we go further through this paper. These south services use plugins to read

from devices or to implement protocols that ingest the data. All the data enters Fledge as JSON

objects with a timestamp and a set of data points that represent the actual values read. Each

south service reads from a single source of data and is independent of every other south service

within Fledge. The plugins allow the south service to be customized to particular devices or

protocols1 without having to rewrite the framework of the south service for each device. South

services always send the data that is read to the Fledge storage service. The storage service is

a buffering service that is used to collect the data from the various south services before

forwarding it to other Fledge services.

A south service may also add a set of filters into the processing of the data as it streams from the

south service to the Fledge storage service. These filters may augment, modify or delete the data

that is read from the devices, providing the first opportunity within the Fledge data stream to

process the data.

1 For the sake of brevity we will simply refer to devices for the remainder of this discussion, however the

points discussed apply equally to protocols and physical devices.

The filters may be arranged in a pipeline, such that the data that is read from the device is fed

into the first filter in the pipeline, the data that comes out of that first filter is then fed into the

second and so forth until the final filter in the pipeline. The output of the final filter is then sent to

the storage service for buffering.

Each filter in the pipeline may output as much or as little data as it desires, there is no requirement

that a filter must output a reading for every reading that is input to the filter. This allows the filters

to add or remove readings from the stream as well as modifying the data in the stream. The filters

themselves are implemented as plugins, written either in C/C++ or Python. A growing number of

filters exist, approximately 30 at the time of writing. The collection of filters allows application

development to be done without the necessity of coding, however the design of the filter plugin

API is such that developing a new filter is not a particularly complex process if it should be

required.

Processing on Egress

Data leaves Fledge for upstream systems, including other Fledge

instances using the north task. These tasks have a variety of plugins

that are used to match the Fledge data to the external systems and to

implement the protocols needed to communicate with those systems.

Processing may also be done as data is pulled from the storage buffer

and before it is processed by the north plugin. This processing works

in exactly the same way as the ingress processing, a filter pipeline may

be used to process the data. In the case of the north the data that

passes through the filters will not be a single asset or a set of assets from a single south service,

but rather all the assets that are being sent to the north system.

Filter Categories

The filters can be broken down into a number of categories.

● Those that modify single readings by applying a simple operation.

● Filters that add extra data to an individual reading, either static data or data derived from

some calculation.

● Filters that add extra readings into the data stream.

● Filters that remove readings from the data stream.

● Filters can replace one or more readings with data computed from the values of those

readings.

Simple Modifications Filters

These are perhaps the simplest of all the filter categories. They implement the simplest of

functions, such as scaling or adding an offset to the values of the data read from the device. They

are useful for converting from one set of units to another to enable direct comparisons of data

further upstream. The most obvious of these is the scale filter itself that allows a scale multiplier

to be applied to every value within a reading and also a constant offset.

Data Augmentation Filters

Data augmentation filters do not change the existing data, rather they enhance that data by adding

new data to the reading. This may be static data or data derived from the values in the reading or

the history of the reading.

The simplest augmentation filter that adds static data to the reading is the metadata filter. It adds

static items to each reading, typical uses are to tag the data with units, or data regarding the

collection point of the unit. An example might be to add a machine location or serial number to

the reading to add traceability later in the processing stream.

Another example of adding static data is the OMF Hint filter. This adds hint data to the reading

that is later picked up by the outgoing OMF north plugin to guide that plugin as to how to deal with

the reading.

Another filter in this class worth highlighting is the expression filter, it allows an arbitrary

mathematical expression to be applied to the data values within the reading. The expression may

be entered in the configuration of the plugin, allowing for users without any programming

experience to modify the values read from a device using complex mathematical formulae. This

filter can be used to modify the data, for example making the scales logarithmic or to create new

data based on the data in the reading. An example might be to use a voltage and current reading

to determine the power consumption of a device.

Data augmentation filters may also work on more than just a single reading, there are many

examples of filters that will create new data based on a range of readings using either time or

reading count.

https://fledge-iot.readthedocs.io/en/develop/plugins/fledge-filter-scale/index.html
https://fledge-iot.readthedocs.io/en/develop/plugins/fledge-filter-metadata/index.html
https://fledge-iot.readthedocs.io/en/develop/plugins/fledge-filter-omfhint/index.html
https://fledge-iot.readthedocs.io/en/develop/plugins/fledge-filter-expression/index.html

Statistics Filter

The statistics filter is designed to accept data from one or more assets and create statistics over

specified time intervals, for example to produce the mean, standard deviation and variance for

100 milliseconds samples of the data. The statistics that can be produced are;

● mean - the average of all the values in the time period calculated by adding

up all the values and dividing by the number of values.

● mode - the number that appears most often in the time period.

● median - the median is found by sorting all the values in the time period and

then choosing the middle number in this sorted set.

● minimum - the minimum value that appears within the time period.

● maximum - the maximum value that appears within the time period.

● standard deviation - the standard deviation measures the spread of the

numbers above and below the mean value.

● variance - the variance is the average of the squared differences from the

mean value calculated over the time period.

These statistics values may then be used by downstream filters, stored and sent to the

destination system or used within the rules that implement edge notifications.

Fast Fourier Transform Filter

The Fast Fourier Transform filter is designed to examine incoming waveform data and extract

frequency based data using the FFT algorithm.

Root Mean Squared Filter

The RMS fitler uses a root mean square algorithm to determine the power of a waveform.

Vibration Features Filter

The vibration features filter is designed specifically to handle incoming data that is from a vibration

sensor and to extract features that are useful downstream to machine learning or simple rule

based notification rules.

The Fledge Notification Model

Fledge supports an optional microservice that is used to generate

notifications or events. The notification service sits logically in the

dataflow between the south ingress services and the storage

service. It receives the data after it has been through ingress

processing in the south services but before it has been processed

for egress. As a result any processing done in south services is

https://foglamp.readthedocs.io/en/nightly/plugins/foglamp-filter-statistics/index.html
https://foglamp.readthedocs.io/en/nightly/plugins/foglamp-filter-fft/index.html
https://fledge-iot.readthedocs.io/en/develop/plugins/fledge-filter-rms/index.html
https://foglamp.readthedocs.io/en/nightly/plugins/rule.html

available to the notification service but not processing done on egress.

The notification processing takes place in parallel to the buffering and forwarding of data via

egress services, as a result notification processing happens soon after the data is first read by

the Fledge device. The only latency involved is the degree of buffering that has been configured

into the south service.

The notification service receives data that flows into the Fledge buffer

and passes this to the various rules that have been configured for

evaluation. If a rule is triggered then the delivery plugin associated

with the notification is called to perform the action associated with

that notification. Both notification rules and notification delivery

mechanisms are implemented as plugins to the notification service and are thus extendable in

the same way as other services within Fledge.

Notification Rules

A notification rule plugin is the evaluator that is used to generate notification, it requests data from

the notification server for one or more assets of interest. It may also ask for data to be delivered

in a specific way, either as a time window of data with a function applied to it (e.g. an moving

average over a 10 second period), or it may request each individual data point to be delivered to

it.

The notification service then calls the evaluation entry point of the rule whenever new data is

available, the rule may return either a triggered or a cleared status based on the data it received

and any processing the rule performed. The rule may also store data within itself for evaluation in

future invocations if it desires.

What happens when the rule returns its status depends upon how the notification has been

configured, three options are supported.

1. Call the delivery routine if the rule state changes from cleared to triggered between

invocations.

2. Call the delivery routine if the rule state is triggered and the delivery has not been called

for a specified time.

3. Call the delivery routine if the rule state has transitioned from triggered to cleared.

In all cases it is possible to configure a minimum time between notification deliveries in order to

prevent the flooding of the system to which notifications are delivered.

A number of generic rule plugins exist within Fledge which allow for the crossing of threshold,

rapid changes in data values or expression evaluation. In addition specific rules can be created

in Python or C++ to expand upon this functionality.

Notification Delivery

Notification delivery plugins can take action to trigger external systems or feed into Fledge itself

when a notification is triggered or cleared. The notification is called with the rule state that causes

the notification and information associated with the rule and data. Some common delivery

mechanisms that are available within Fledge include;

● Send a message to a common messaging platform such as Slack, Skype, Google

Hangouts, Telegram etc.

● Send an email message.

● Add an assert into the Fledge data stream.

● Execute a Python script.

● Interact with the Amazon Alexa platform to send a voice notification.

● Trigger an action in IFTTT.

● Trigger the delivery to a north side system that is otherwise disabled.

● Alter the internal configuration of Fledge, for example increase the collection rate of certain

data when a condition becomes true.

● Raise a problem ticket in Jira or Zendesk.

The notification delivery plugins can be easily extended to perform any action desired with relative

ease. Adding an asset into the data stream can be useful for audit purposes for triggering specific

analytics in one of the destination systems.

Building Applications

Combining the data processing abilities of the filters and the ability of the notifications service to

detect events and trigger actions on external systems it is possible to write applications merely

by combining these features. Where specific functionality is required it may become necessary to

create new plugins to implement that functionality, however this is simpler than creating complete

bespoke applications.

Should these facilities not provide sufficient functionality there are three more options available to

produce an application that interacts with a Fledge system.

● Write a standalone application that uses the Fledge data browsing API to extract data from

the Fledge buffer.

● Write a custom microservice using the Fledge libraries that is sent data as it arrives into

Fledge.

● Write an application that is fed data from the north of Fledge using one of the protocols

supported by the Fledge north plugins.

Standalone Applications

Fledge offers a REST API that can be used by any application in order to extract data from the

buffer contents of the Fledge device. This allows data to be retrieved and processed by an

external application for the duration of that data being held in the buffer. Using this mechanism to

write applications against Fledge devices offers flexibility but has a few disadvantages;

● The application must poll the data as there is no mechanism for an application to be

pushed data.

● An application can only access the data up to the point that the data is purged. If an

application requires long term access to any of the data it must provide its own mechanism

for doing this.

Custom Microservice

A microservice within the Fledge environment is relatively easy to produce and has some

advantages over writing a standalone application;

● A set of standard libraries is available for creating microservices, interacting with the

microservice management API and with the storage system API’s.

● Configuration is available and integrated with the Fledge configuration management

system.

● Microservices can register with the storage service to be delivered updates to all or a

subset of the asset readings as they arrive, negating the need to poll for new data.

Microservices can be written in Python or C++ and will be scheduled by Fledge once they have

been installed into the Fledge environment. They also benefit from the Fledge monitoring a

recovery of microservices should they fail.

Single Device Multiple Sensors
Multiple Destinations

Hierarchy or Mesh
Redundancy/Fail-Over

Cloud

Any
On Premise

System

ISA95Any AI/ML

Cloud

Fog

Edge

Sensor

Any
On Premise

System

North Application

One of the features of Fledge is that data can be delivered to multiple north destinations, therefore

nothing is lost by adding a second north destination to send data to an application that runs at or

near the edge device.

This has the advantage over using the data browsing API that data is sent by Fledge without the

need to either poll.

Compared to writing a custom microservice there is no longer the need to tightly integrate with

Fledge. Also, you may use the language of your choice rather than being limited to the languages

for which Fledge provides libraries.

The choice of communications protocol to use will be dictated by the ease of availability in your

chosen language and also the availability of a north plugin in Fledge. The HTTP/HTTPS plugin is

possibly the simplest candidate if this approach is used. You will need to be able to decode the

JSON payloads and be prepared to consume blocks of data that may be large rather than work

on small numbers of readings.

Since the connection to Fledge is via the north services of Fledge, and each north destination has

its own north task or service to feed the data, you are free to add custom filter pipelines that pre-

process the data for your application without having any impact on the data that is sent to other

north destinations.

The Edge Application Life-Cycle

Engineering, maintenance, operation, business teams may or may not know how to code.

Fledge’s no-code application environment enables them to write the applications to get the

information they need from the edge. However, how do they deploy, operate and manage these

applications without creating significant new burdens on ITOps, SecOps and compliance?

Fledge-manage is an IIoT life-cycle management system designed to enable the OT workforce

with a self-serve scaleable industrial 4.0 Edge. OT experts know their own machines, processes

and systems. The application life-cycle usually starts with a condition monitoring, predictive

maintenance, efficiency, quality, situation awareness or safety opportunity or problem that the OT

team uniquely understands how to address. The second phase is the creation of the application.

At this point, just like a smartphone, the application needs to get securely provisioned to the

correct gateway, VM or container on the edge.

	The Processing Model
	Processing on Ingress
	Processing on Egress
	Filter Categories
	Simple Modifications Filters
	Data Augmentation Filters
	Statistics Filter
	Fast Fourier Transform Filter
	Root Mean Squared Filter
	Vibration Features Filter

	The Fledge Notification Model
	Notification Rules
	Notification Delivery

	Building Applications
	Standalone Applications
	Custom Microservice
	North Application

