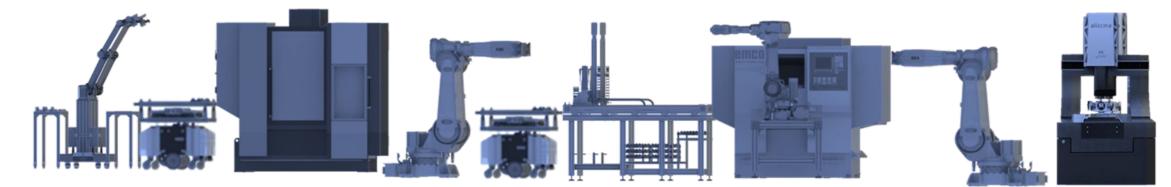


Application of FLEDGE at Neuman Aluminium: An Industrial Use Case

Sebastian Kropatschek, Thorsten Steuer

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie **Bundesministerium** Digitalisierung und Wirtschaftsstandort

Agenda



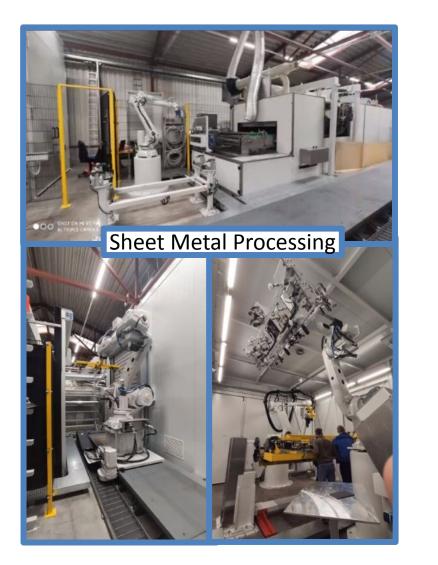
Austrian Center for Digital Production					
Neuman Aluminium					
Application Scenario					
Architecture Variants					
Roadmap					
Mapping Vision to Architecture					
Application of Fledge					
Transaction Manager					
State Management					
Demo					
Learnings					
Feedback Develop and Debug FLEDGE Plug-Ins					

Center for Digital Production -Research

1 Digital Engineering	2 Adaptive Manufacturing & Smart Factories	3 Process-Based Manufacturing Orchestration	4 Data Integration and Analytics for Digital Production	5 Sustainable Production Systems
Merge Design & Manuf.	Reconfigurability	Orchestration & Data	Interoperability	Flexible Safety
	Process Adaptability		Advanced Analytics	Fail-safe
Data Driven Design		Process based PLM	(AI)	Manufacturing
	Predictability			
Digital Twin Fidelity		Deployability (HMI)	PMV based Analytics	Circular Economy
	Shop Floor OS			
• "Wear-aware" CAM		 Data Contextualisation 	Knowledge Graphs	 Production as a Service

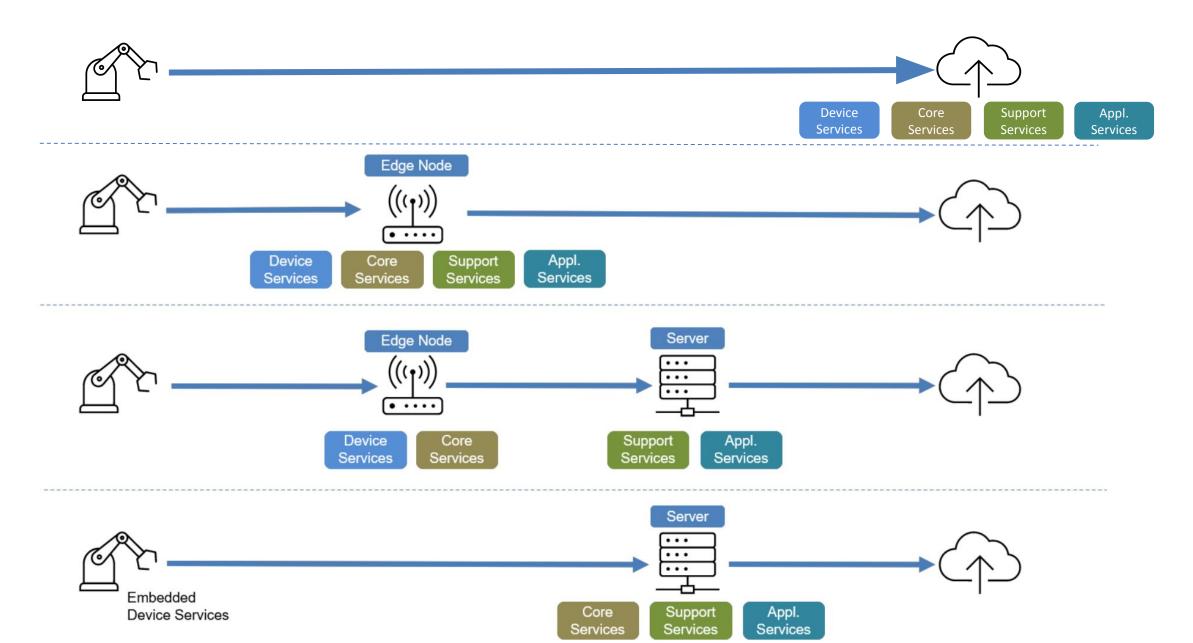
Neuman Aluminium

The Neuman Aluminium Group is your global partner for high-quality aluminium solutions.



FACTS

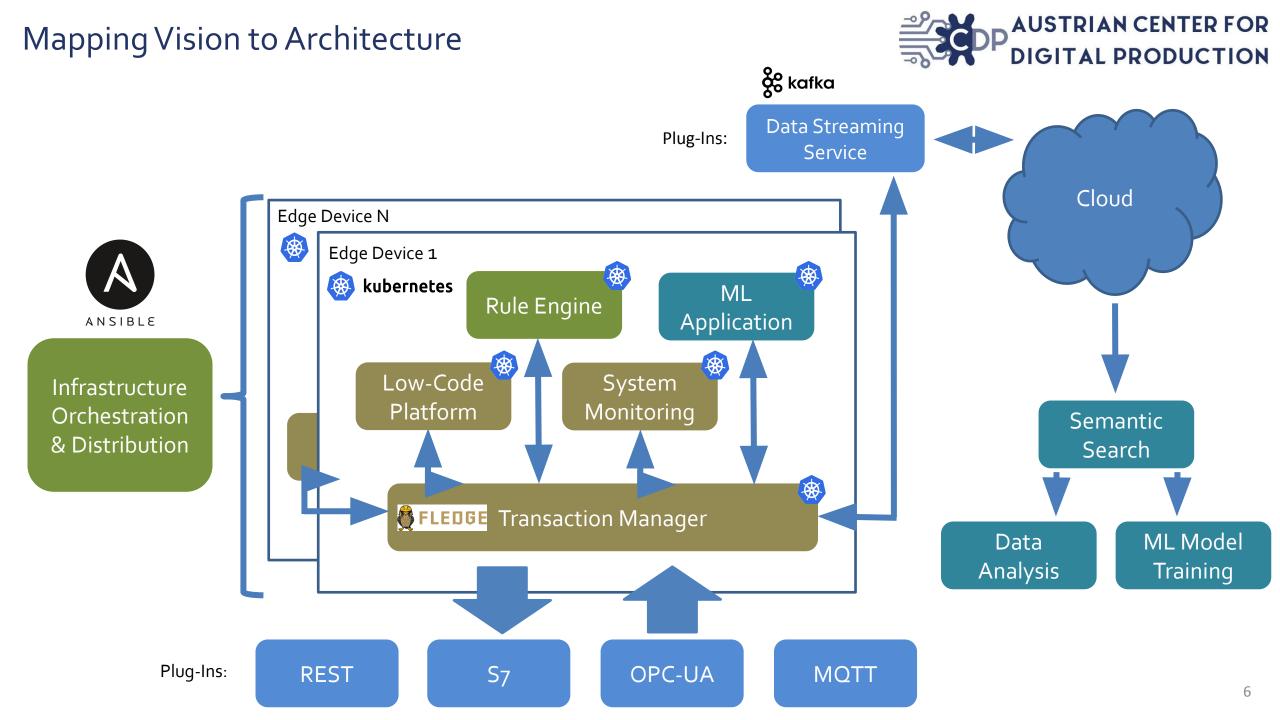
Application Scenario


Scenario:

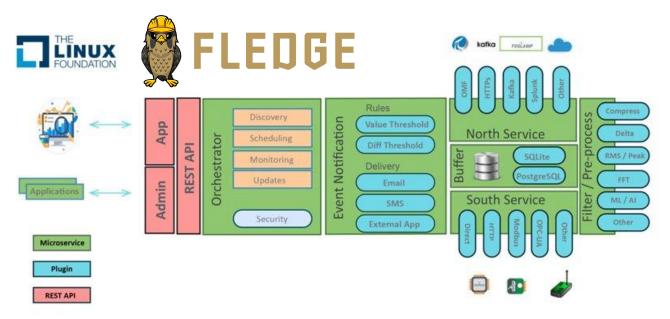
- Multiple Production Facilities in Europe
- Controlled by a Centralized MES
- MES Submits a Production Order to a Facility
- Machine Processes the Order and Notifies MES of Current Production Status
- MES Sends Data to a Subsequent Machine
- Once the Connection to the MES is Lost, Production will Continue as long new Input is Required

The centralized nature of the system creates a critical dependency on the network connection!

5

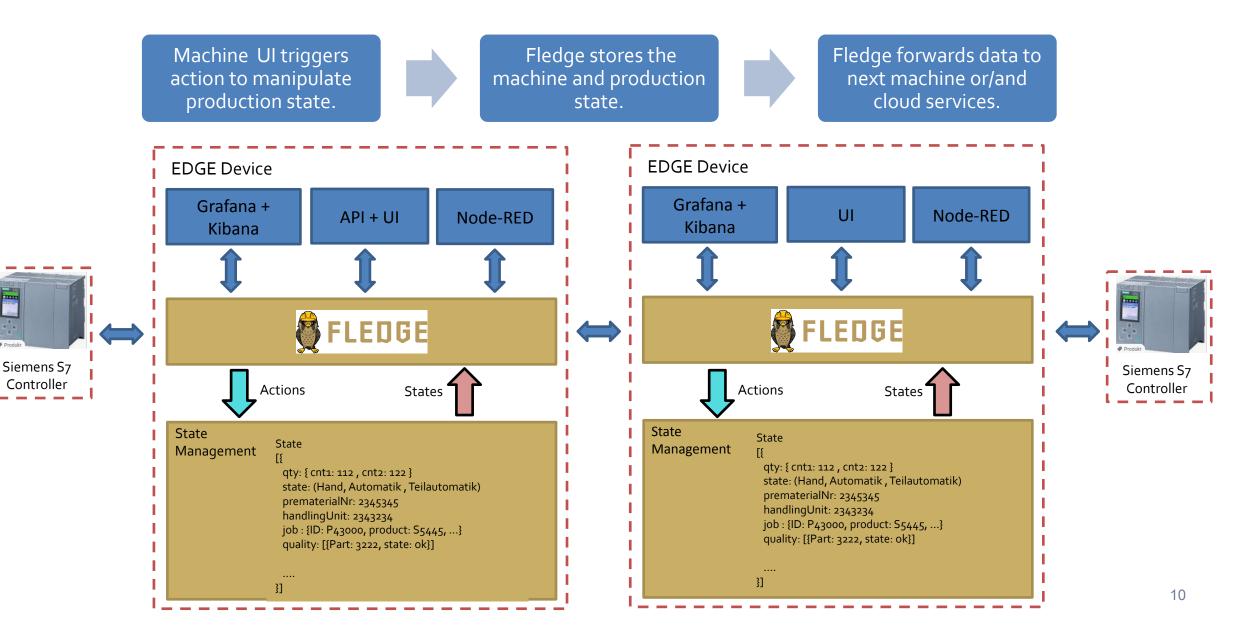

Roadmap for connected Production Systems (Neuman)

Self-healing, scalable, up-gradable, flexible, platform independent and offline capable edge devices.


Open-source software stack to deliver device, core, application and supporting services for production equipment.

Knowledge or/and ML driven smart edge devices to semi-Towards the Representation of Cross-Domain Quality Knowledge for Efficient Data Analytics autonomously control machine, forward data and adjust production equipment.

Fledge as Transaction Manager



Fledge...

- ... is open source.
- ... delivers data to different cloud services.
- ... collects data from any sensor.
- ... aggregates, combines and organizes data.
- ... transforms and filters data.
- ... buffers data & resends after connection is reestablished.
- ... is highly performant and resource efficient.

Current Project Status

S7 South / North Plug-in

New Fledge South S7 Plug-In

The plug-in is used to read data from a Siemens S7 PLC.

Features:

- Read Various PLC Data Types
- Arrays
- Objects/ Structs (UDTs)
- Array of Objects
- Optimized Reading of Data as Blocks
- Output:

JSON Object /

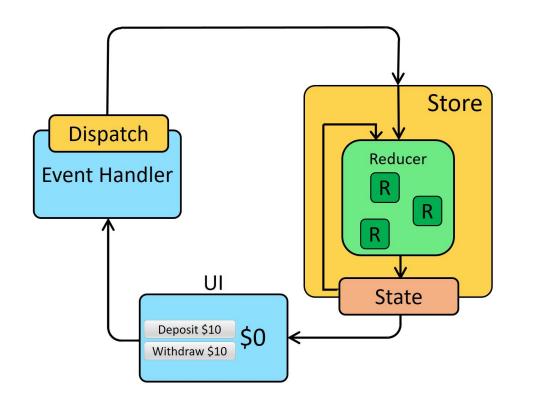
Escaped String

Flat Variable List

New Fledge North S7 Plug-In

The plug-in is used to write data to a Siemens S7 PLC

Features:


- Write Various PLC Data Types
- Verification: Write + Read
- Add Static Datapoint to Asset
- Limited Bool Support because of Snap7 -Python Library

Fledge State Management

Redux Data Flow

State Management

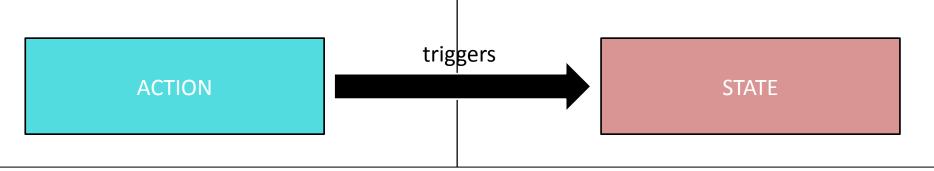
Redux Principles:

- Single Source of Truth: The state of your whole application is stored in an object tree within a single store.
- State is Read-only: The only way to change the state is to emit an action, an object describing what happened.
- Changes are made with pure functions: A reducer is a central place where state modification takes place. Reducer is a function which takes state and action as arguments, and returns a newly updated state.

New Fledge Rule Plug-In

The rule is used to detect if a data point is different from its previously received value within an asset.

Features:


- Configurable to Monitor Multiple Assets
- Can be Configured to Rename Data Points

New Fledge Notification Plug-In

The notification is used to create a new asset based on data previously received from the rule plugin and the assets already collected by Fledge.

Features:

- Configurable Asset Name to Create
- Can be Configured to Choose which Assets and Data Points Should be Used to Create the New Asset.
- Can be Configured to Rename Data Points
- Can be Configured to Authenticate against the FLEDGE REST API.

Developed and Relevant Fledge Plug-Ins

Developed by ACDP

- Transaction Manager
 - fledge-south-s7-python
 <u>https://github.com/kropatschek/fledge-south-s7-py</u>
 <u>thon.git</u>
 - fledge-north-s7-python https://github.com/kropat_schek/fledge-north-s7-python
 - fledge-north-opcuaclient <u>https://github.com/krop</u> <u>atschek/fledge-north-opcuaclient</u>
- State Management
 - fledge-rule-delta <u>https://github.com/kropatschek/fledge-rule-delta.gi</u> <u>t</u>
 - fledge-notify-customasset
 <u>https://github.com/kropatschek/fledge-notify-customasset.git</u>

Provided Plug-Ins by FLEDGE

South

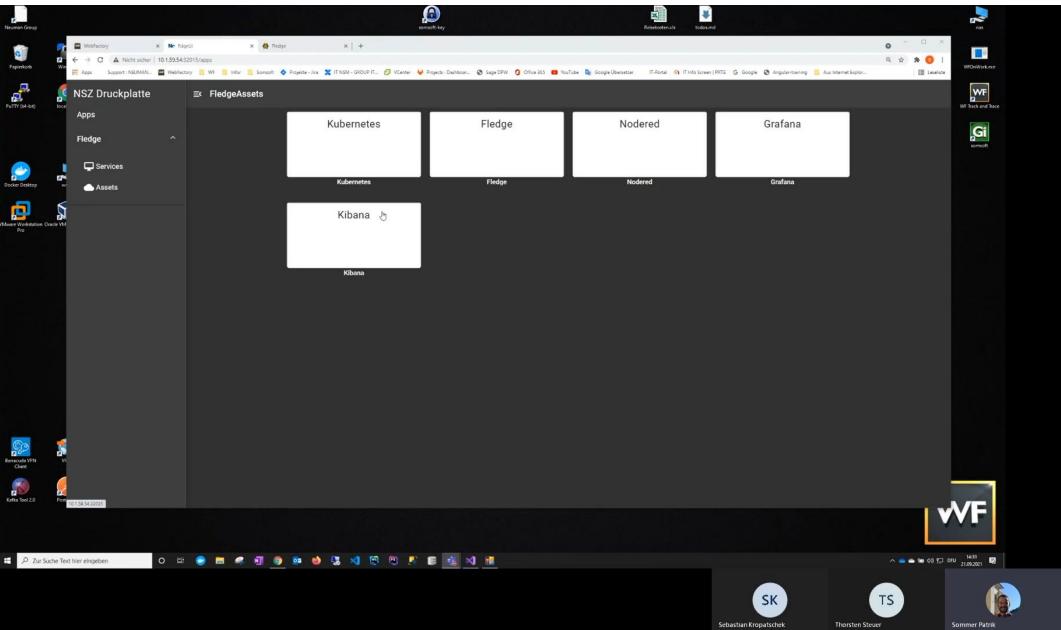
fledge-south-http <u>https://github.com/fledge-iot/fledge-south-http.git</u> fledge-south-opcua <u>https://github.com/fledge-iot/fledge-south-opcua.git</u> fledge-south-modbustcp <u>https://github.com/fledge-iot/fledge-south-modbustcp.git</u> fledge-south-mqtt <u>https://github.com/fledge-iot/fledge-south-mqtt.git</u>

North

fledge-north-kafka <u>https://github.com/fledge-iot/fledge-north-kafka.git</u> fledge-north-opcua <u>https://github.com/fledge-iot/fledge-north-opcua.git</u> fledge-north-http-c <u>https://github.com/fledge-iot/fledge-north-http-c.git</u> fledge-north-http <u>https://github.com/fledge-iot/fledge-north-http.git</u>

Notification

fledge-notify-asset <u>https://github.com/fledge-iot/fledge-notify-asset.git</u> fledge-rule-average <u>https://github.com/fledge-iot/fledge-rule-average.git</u> fledge-rule-simple-expression <u>https://github.com/fledge-iot/fledge-rule-simple-expression.git</u> fledge-notify-mqtt <u>https://github.com/fledge-iot/fledge-notify-mqtt.git</u>


Filter

fledge-filter-asset <u>https://github.com/fledge-iot/fledge-filter-asset</u> fledge-filter-delta <u>https://github.com/fledge-iot/fledge-filter-delta.git</u> fledge-filter-expression <u>https://github.com/fledge-iot/fledge-filter-expression.git</u> fledge-filter-change <u>https://github.com/fledge-iot/fledge-filter-change.git</u>

Demo

Learnings

Performance

- We tested FLEDGE with sampling rates of 50 ms.
- FLEDGE is very resource efficient, runs on a Raspberry Pi.

Flexibility

- The current approach supports a variety of architecture concepts.
- The services and plug-ins of FLEDGE can be combined to cover a big variety of use cases.
- Supports multiple protocols south and north.

Extendability

- Plug-Ins can relatively easy be developed after an initial training period.
- Other plug-ins can be used as templates.

Usability

- Documentation provides great support for users.
- Community is helpful and open to new contributors.

Open Challenges

- Better open-source tool support for monitoring and orchestration of edge devices.
- Improvement of FLEDGE Documentation for Developers.

Bottom Line

Trust open-source and start to adapt and improve FLEDGE!!!

Feedback Develop and Debug FLEDGE Plug-Ins

- Documentation for developers should be extended.
- Logger cannot be stopped manually from the GUI to look at specific error messages. All Plug-Ins must be stopped sometimes to catch the error message.
- Only single log pages can be viewed and the search only works page wise.
- For debugging North Services Node-RED is a useful tool.
- Debugging North Services can be tricky since sometimes after reconfiguring North Services the Service runs into unpredictable states.
- Cannot set debug level via GUI for python plug-ins.
- There is no option available to clean the log if it is full.
- Importing other fledge configurations is not supported and exporting only the configuration is not supported.
- Increase community for testing FLEDGE or develop more unit tests.
- Provide more sample code for plug-ins.
- It is difficult to overview what classes can be used and how to achieve a certain goal.