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The virtualized, software-defined & composable edge 

“Composable” Edge Gateways

Edge Servers

Integrated Edge Boards

Cyber-Physical 
Edge

Cloud 
Orchestration

Raw & High Bandwidth Data Useful Data

Data
Insights

Legacy & Analog Interfaces All-IP

Fleet
Analytics

Data
Warehouse

Hardware Hardware Hardware

Edge Virtualization, Abstraction, Trust, 
Visibility & Control

Device 
Protocol

Edge 
App

Network
Service
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Edge Virtualization Engine (Project EVE) Components
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Project EVE Architecture
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Project EVE Architecture
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› Using self-signed certificates using elliptic curve key pairs
› Reasonable key size for 20 year time frame
› Considering adding certificate signing request
› At factory/install specify EVC plus root CA certificate for EVC

› Leverage TEE/TPM for secure key storage, measured boot, etc
› Device private key never needs to leave TEE/TPM

› Several variants for onboarding depending on factory constraints
› Want strong binding between user/purchaser and device identity

› Images are signed; verified by device; can pull from any datastore
› No remote (ssh) or keyboard access to EVE(*)

(*) Can enable using API for developer debug

Identity, onboarding, and security foundation



› Requirement to never have to visit device due to software bugs and failures
› Including due to power failure during flashing of base image
› Either fall back to old image or be able to do another update

› Dual partition boot (IMGA/IMGB)
› grub patches for gpt priority boot
› Additional partitions for identity (CONFIG) and app instances (PERSIST)

› Policies and timers for fallback vs. commit to new
› “Test” that new base image can connect to EVC etc
› Deployed app instances are not tested as part of this

› Using hardware watchdog plus Linux watchdog to detect hangs and core 
dumps and reboot

› Been using this approach in dev for 12 months without bricking a device

Self-update



Device Connectivity

› Device needs to connect to EVC; can also specify local connectivity for 
app instances

› By default connects using DHCP/IPv4 over eth0, wlan0, and wwan0
› Will use multiple ports for failover and load spreading if available

› Can specify different ports, static IPs, enterprise proxy config, etc
› At software install time with a json file in /config/, or USB stick
› Using device API 

› Device tests connectivity to EVC with fallback to old, retry of new
› Reports results using API

› Prints connectivity diagnostics on console (useful if local console; e.g., 
to debug proxy config)
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Current Edge Container definition

› Images are qcow2 or raw format; manifest refers to one or more 
images. Includes Access Control Lists. Example:
{

"acKind": "VMManifest",

"acVersion": "1.1.1",

"name": "xenial2intf",

"owner": {},

"enablevnc": true,

"vmmode": "HV_HVM",
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"images": [

{

"imagename": "xenial-amd64-docker-20180725",

"maxsize": 1195376,

"readonly": false,

"preserve": true,

"target": "Disk",

"drvtype": "HDD",

"maxsizeUnit": "GB",

"maxsizeDisplayUnit": "GB"

}

],



"interfaces": [ {

"name": "indirect",

"directattach": false,

"acls": [ {

"matches": [ {

"type": "host",

"value": "amazonaws.com"

} ] } ] },

{  "name": "direct",

"directattach": false,

"acls": [ {

"matches": [ {

"type": "ip",

"value": "0.0.0.0/0"

} ] } ] } ],

13

"resources": [

{

"name": "cpus",

"value": 2

},

{

"name": "memory",

"value": 512000

},

{

"name": "storage",

"value": 3145728

}

]



App Instance Connectivity

› Default is local network with NATed connectivity
› Can provision a switch network - an L2 network e.g, on eth1
› Can provision PCI controller or COM port if instance has its own 

drivers (industrial Ethernet, TSN, BTLE, modbus over serial)
› Can provision a cloud network - connect to AWS, Azure VPN
› Can provision a mesh network - connect device to device

› Uses LISP (https://tools.ietf.org/html/rfc6830)
› Handles multihoming, mobility, NAT traversal, authentication, encryption
› No changes to app; uses DHCP to get IP addresses as normal

› Can provision a local network with no external port; local-only
› If vnc is enabled in manifest can use Guacamole for remote console
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EVE-EVC API

› Connection from device (through NAT) using TLS1.2 (soon 1.3)
› Different services:

› POST api/v1/edgedevice/register for device onboarding
› GET api/v1/edgedevice/ping for connectivity test
› GET api/v1/edgedevice/config complete device + instance config
› POST api/v1/edgedevice/info for triggered device/instance status
› POST api/v1/edgedevice/metrics for periodic device/instance metrics
› POST api/v1/edgedevice/logs for logs from microservices on device

› Protobuf encoded messages
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