
EVE
Edge Virtualization Engine

Project Overview

Local DB

Central
Visibility
&
Control

Project EVE Open API

IIoT 1.0: Vertical data silos & platform lock-in
Data/edge sovereignty & control issues
Hardware-defined & unmanaged edge

IIoT 2.0: Open IoT data architecture, no lock-in
Data & edge belong to the enterprise
Software-defined & ubiquitous edge

Clouds

On-prem

Edge GW

Assets

(Existing)

The need for edge virtualization: IIoT 1.0 → IIoT 2.0

Sensors, Equipment, PLCs…

The Enterprise Cyber-Physical Edge Stack

Reduce outages Improve
predictability

Increase
efficienciesCustomer Business Outcomes

Cloud/DC

Edge Software

Edge Hardware

Machines & Assets

Open source edge runtime
for ubiquity

Monetize visibility,
control,

security, apps, and plugins
(EV-Central & EV-Catalog)

Infra Services Layer: Virtualize & Abstract Edge

Data Services Layer: Abstract & Distribute IoT Data

EVE: Edge Virtualization Engine

IoT Edge

Greengrass

The virtualized, software-defined & composable edge

“Composable” Edge Gateways

Edge Servers

Integrated Edge Boards

Cyber-Physical
Edge

Cloud
Orchestration

Raw & High Bandwidth Data Useful Data

Data
Insights

Legacy & Analog Interfaces All-IP

Fleet
Analytics

Data
Warehouse

Hardware Hardware Hardware

Edge Virtualization, Abstraction, Trust,
Visibility & Control

Device
Protocol

Edge
App

Network
Service

Key Requirements

ZERO TRUSTZERO TOUCH ANY
APP | HARDWARE | NETWORK

APP ?

EDGE CONTAINERS

Edge Virtualization Engine (Project EVE) Components

Hardware Layer

Edge Container Layer

Optional
driver

domain

EVErouter
ACLs

secure
overlay

EVEagent
config,
status,
events

image
downloader

EVEmanager
orchestrator

Verifier
sha
sigs

identity
manager
keygen

domain
manager

dom0

Edge Virtualization Engine
Agnostic interface supported by API libraries, open to all hardware/network/apps

Unicloud/
cli access

EDGE CONTAINERS

Project EVE Architecture

Hardware Layer

EVE-EVC API - config, status, metrics, logs

EVErouter:
DHCP
DNS
ACLs
LISP
VPN

EVEagent:
config,
status,
metrics

Downloader
EVEmanager:

instance
orchestrator

Verifier
sha, sigs

HW
info,

metrics

Domain
mgr

dom0Crypto
device

identity

TEE/TPM

Crypto
instance
identity

Device
onboarding

Mesh
network

TLS 1.2/1.3 OCSP stapling
Baseos

manager

Grub gpt
priority

boot

Network
interface
manager

Device
connectivity

Instance
connectivity

log
manager

Eth, RS 485, BTLE etc

NAT

I/O virtualizatiion
and

assignment

switch

mesh

cloud

Instance B

Instance C

Instance D

Driver domain(s)
Instance A

Edge Virtualization Engine

Eth, wlan,
wwan

Hardware
watchdog

Linux
watchdog

Remote instance
consoles

Device Identity
Onboarding

Security
Foundation

Self
update

Device
connect-

ivity

Device
APIs

Instance
runtime

Instance
connect-

ivity

Deployed
Instances

Project EVE Architecture

Hardware Layer

EVE-EVC API - config, status, metrics, logs

EVErouter:
DHCP
DNS
ACLs
LISP
VPN

EVEagent:
config,
status,
metrics

Downloader
EVEmanager:

instance
orchestrator

Verifier
sha, sigs

HW
info,

metrics

Domain
mgr

dom0Crypto
device

identity

TEE/TPM

Crypto
instance
identity

Device
onboarding

Mesh
network

TLS 1.2/1.3 OCSP stapling
Baseos

manager

Grub gpt
priority

boot

Network
interface
manager

Device
connectivity

Instance
connectivity

log
manager

Eth, RS 485, BTLE etc

NAT

I/O virtualizatiion
and

assignment

switch

mesh

cloud

Instance B

Instance C

Instance D

Driver domain(s)
Instance A

Edge Virtualization Engine

Eth, wlan,
wwan

Hardware
watchdog

Linux
watchdog

Remote instance
consoles

› Using self-signed certificates using elliptic curve key pairs
› Reasonable key size for 20 year time frame
› Considering adding certificate signing request
› At factory/install specify EVC plus root CA certificate for EVC

› Leverage TEE/TPM for secure key storage, measured boot, etc
› Device private key never needs to leave TEE/TPM

› Several variants for onboarding depending on factory constraints
› Want strong binding between user/purchaser and device identity

› Images are signed; verified by device; can pull from any datastore
› No remote (ssh) or keyboard access to EVE(*)

(*) Can enable using API for developer debug

Identity, onboarding, and security foundation

› Requirement to never have to visit device due to software bugs and failures
› Including due to power failure during flashing of base image
› Either fall back to old image or be able to do another update

› Dual partition boot (IMGA/IMGB)
› grub patches for gpt priority boot
› Additional partitions for identity (CONFIG) and app instances (PERSIST)

› Policies and timers for fallback vs. commit to new
› “Test” that new base image can connect to EVC etc
› Deployed app instances are not tested as part of this

› Using hardware watchdog plus Linux watchdog to detect hangs and core
dumps and reboot

› Been using this approach in dev for 12 months without bricking a device

Self-update

Device Connectivity

› Device needs to connect to EVC; can also specify local connectivity for
app instances

› By default connects using DHCP/IPv4 over eth0, wlan0, and wwan0
› Will use multiple ports for failover and load spreading if available

› Can specify different ports, static IPs, enterprise proxy config, etc
› At software install time with a json file in /config/, or USB stick
› Using device API

› Device tests connectivity to EVC with fallback to old, retry of new
› Reports results using API

› Prints connectivity diagnostics on console (useful if local console; e.g.,
to debug proxy config)

11

Current Edge Container definition

› Images are qcow2 or raw format; manifest refers to one or more
images. Includes Access Control Lists. Example:
{

"acKind": "VMManifest",

"acVersion": "1.1.1",

"name": "xenial2intf",

"owner": {},

"enablevnc": true,

"vmmode": "HV_HVM",

12

"images": [

{

"imagename": "xenial-amd64-docker-20180725",

"maxsize": 1195376,

"readonly": false,

"preserve": true,

"target": "Disk",

"drvtype": "HDD",

"maxsizeUnit": "GB",

"maxsizeDisplayUnit": "GB"

}

],

"interfaces": [{

"name": "indirect",

"directattach": false,

"acls": [{

"matches": [{

"type": "host",

"value": "amazonaws.com"

}] }] },

{ "name": "direct",

"directattach": false,

"acls": [{

"matches": [{

"type": "ip",

"value": "0.0.0.0/0"

}] }] }],

13

"resources": [

{

"name": "cpus",

"value": 2

},

{

"name": "memory",

"value": 512000

},

{

"name": "storage",

"value": 3145728

}

]

App Instance Connectivity

› Default is local network with NATed connectivity
› Can provision a switch network - an L2 network e.g, on eth1
› Can provision PCI controller or COM port if instance has its own

drivers (industrial Ethernet, TSN, BTLE, modbus over serial)
› Can provision a cloud network - connect to AWS, Azure VPN
› Can provision a mesh network - connect device to device

› Uses LISP (https://tools.ietf.org/html/rfc6830)
› Handles multihoming, mobility, NAT traversal, authentication, encryption
› No changes to app; uses DHCP to get IP addresses as normal

› Can provision a local network with no external port; local-only
› If vnc is enabled in manifest can use Guacamole for remote console

14

https://tools.ietf.org/html/rfc6830

EVE-EVC API

› Connection from device (through NAT) using TLS1.2 (soon 1.3)
› Different services:

› POST api/v1/edgedevice/register for device onboarding
› GET api/v1/edgedevice/ping for connectivity test
› GET api/v1/edgedevice/config complete device + instance config
› POST api/v1/edgedevice/info for triggered device/instance status
› POST api/v1/edgedevice/metrics for periodic device/instance metrics
› POST api/v1/edgedevice/logs for logs from microservices on device

› Protobuf encoded messages

15

