
Project EVE

Providing zero touch, zero trust, for any app on any network
Erik Nordmark, Chief Architect, ZEDEDA

Roman Shaposhnik, VP Product & Open Source, ZEDEDA

The Edge, EVE, and LF-Edge

2

Edge means different things to different people

3

See https://www.lfedge.org/resources/publication-download/

Fit in Edge Continuum

4

Project EVE is focused on IoT
workloads at the Smart

Device Edge

Challenges at the User Edge
● Diversity of gateways and apps

○ Infrastructure management
○ Orchestration of apps
○ Some apps with cloud assumptions

● Scale and automation
○ Geographically disperse
○ Deployment and maintenance
○ Long deployment lifecycle 7+ years

● Security – increased threat vector
○ No perimeter network security
○ No perimeter physical security
○ Varying requirements - OT and IT

● Diverse connectivity
○ Upstream and downstream
○ Might not control enterprise network

Historian, SCADA or
On-Premises Systems

5

SMB/ROBO

Residential

Mobile

Service Provider EdgeUser Edge

LF Edge - the end to end context
Deployment ready Open Source - use cases

Carrier
Access

Enterprise &
IIOT

Carrier Cloud
Data Center

Carrier
Interconnect

Internet /
Web

Public Cloud

Enterprise Core & Cloud

USE OSS+SDO

Hosted Private
Cloud

X-Project Collaboration

LF Edge Summary
Vision: Our software & projects enable rapid productization of Edge platforms by leveraging end user input to drive and supply the
necessary building blocks (and/or frameworks, reference solutions) to facilitate integration and interoperability for Edge
Computing across Telecom Service Providers, Cloud Providers, IOT & Enterprises

7

Projects

Premier Members

IMPACT - STAGE 3 GROWTH - STAGE 2 AT LARGE - STAGE 1

EVE Introduction and Security

8

EVE’s architecture

containerd

User Edge Compute Hardware

Open API

Partition A Partition B EVE managed, workload-centric storage

 EVE services

EVE Controller

Disk overhead: 500M

RAM overhead: 500M
CPU overhead: 1 core

Hypervisor (Xen, KVM, ACRN)

Dom 0 (2021: multiple Dom0s)

Dom 2Dom 1

EVE Controller

9

Challenges Solved with Edge Virtualization

SaaS

Web
Console

Edge Virtualization Engine (EVE)
• Abstraction layer designed for the edge
• Created and donated by ZEDEDA to LF
• Open sourced under Apache License v2
• Part of Linux Foundation LF Edge Project

Any Gateway at IoT Scale

Hardware

Commercial

Open Source

Deploy, Secure and Manage
Gateway and Apps at Scale

App
Marketplace Any Application

VM or Container
APPAPPAPPAPP

No Compromise to Security
(TPM and vTPM)

Historian, SCADA
or On-Premises System

Any Cloud

Adam
Controller

Eden
driver

App deployment is but the tip of the iceberg

Hardware LayerTEE/TPM Eth, RS 485, BTLE etc

Instance B Instance C Instance DInstance A

Run “apps”
at the edge

Support any
app on any HW

Manage
connectivity

Secure the
data & device

Monitor & manage
all edge resources and

EVE image

11

EVErouter:
DHCP
DNS
ACLs
VPN

EVEagent:
config,
status,
metrics

Downloader

EVEmanager:
instance orchestrator

Verifier
sha, sigs

HW
info,

metrics

Domain
mgr

dom0Crypto
device

identity

Measured
boot and
remote

attestation

Device
onboarding

Disk
encryption

TLS 1.2/1.3 + object signing

Baseos
manager

Grub gpt
priority

boot

Network
interface
manager

log
manager

local +
NAT

I/O virtualizatiion
and

assignment

switch

cloud

Edge Virtualization Engine

Eth, wlan,
wwan

Hardware
watchdog

Linux
watchdog

Remote instance local
consoles

Volume manager

EVE-EVC API - config, status, metrics, logs

Common Insertion Points for EVE

› Application/container is already working at small scale
› Cloud connectivity etc worked out
› Need to deploy at much larger scale with less manual work
› Need to operate at scale handling day 2 issues (patch, update, etc)

› Mixture of legacy application (Linux, Windows) and new
› Desire to run legacy as VM, while deploying containers/clusters

› Deploying containers but concerned about edge security
› Hardware root of trust; firewall rules; VPN integration
› How to securely update container runtime and OS

› Need richer connectivity for containers or VMs
› Edge-to-edge, VPN to cloud

12

Zero Touch

› Enable drop ship to installer
› Factory/supply chain installs EVE; handles unique device identity
› Installer connects power and network/serial cables
› Visual feedback to installer that device connected to controller in cloud

› Everything else done from the cloud
› Edge container lifecycle (install, update, pause, snapshot)
› Device lifecycle (EVE patch/update, EVE connectivity changes)
› Without any risk of turning the device into a brick

› Only broken hardware or cabling changes requires touching the device

13

Remotely Manage Any Edge Node

•Any type of silicon and node
•Automated on-boarding
•Autonomous operations

Any Silicon

Any User Edge Compute Node

Node calls “home” for
configuration and updates

No field expertise required

Configuration
Updates

+ any cloud?

14

Controller

Any Edge Node

› EVE today supports ARM and Intel/AMD
› Requires processor support for type 1 hypervisor (VT-x etc)

› Supports a range of upstream and downstream IP connectivity
› Ethernet, WiFi, LTE, and anything else supported by Linux

› Supports a range of downstream I/O connectivity
› RS-232, RS-485 serial ports
› USB, Audio, etc

› Runs any application (Edge Container)
› Existing VMs, containers, clusters (including EdgeX Foundry, Fledge, Azure

IoT Edge, AWS Greengrass Core), future Unikernels
› Applications are not concerned with the variations in IP connectivity

15

Security threats at the User Edge

• User access - poor usernames/passwords
• Physical access

• USB stick, ethernet cable
• Theft

• Disk/SSD
• Clone device

• Network
• DDoS of device
• Attacks exploiting software bugs in OS/runtime

• Device becoming part of botnet attacking others

16

Zero Trust
People, Process and Technology

• People
o Remove need for device usernames/passwords
o RBAC and multi-tenancy in controller

• Processes - handle 7+ year lifetime at edge
o Secure, scalable distribution of updates
o API reports (resource usage, firewall violations)

enable analytics in controller

No Usernames &
Passwords

Hardware Root
of Trust

Distributed
Firewall

Layered Security
Model

API to Centralized
Management

• Standard Security Technologies for the User Edge
o Hardware root of trust (e.g., TPM)
o Crypto-based identification
o Measured boot and remote attestation
o Encryption at rest and in-flight (TLS); keys sealed by TPM
o Signed images for EVE-OS and applications
o Use hypervisors for strong isolation and defense in depth
o Distributed firewall for every app
o Physical security—port isolation
o Support deployment of virtual security appliances

17

EVE Architecture

18

Project EVE Architecture

Hardware Layer

EVE-EVC API - config, status, metrics, logs

EVEagent:
config,
status,
metrics

Downloader

EVEmanager:
instance

orchestrator

Verifier
sha, sigs

HW
info,

metrics

Domain
mgr

dom0Crypto
device

identity

TEE/TPM

Measured
boot and
remote

attestation

Device
onboarding

Disk
encryption

TLS 1.2/1.3 + object signing

Baseos
manager

Grub gpt
priority

boot

Network
interface
manager

Device
connectivity

log
manager

Eth, RS 485, BTLE etc

Instance B

Instance C

Instance D

Driver domain(s)
Instance A

Edge Virtualization Engine

Eth, wlan,
wwan

Hardware
watchdog

Linux
watchdogSelf

update

Device
connect-

ivity

Edge
Container
runtime

Deployed
Edge

Containers

EVC sample: Adam Commercial EVC:

Device
APIs

Device Identity
Onboarding

Security
Foundation

EVErouter:
DHCP
DNS
ACLs

Instance
connectivity

local +
NAT

I/O virtualization
and

assignment

switch

Remote instance local
consoles

Volume manager

Edge
Container
connect-
ivity and
storage

Project EVE Architecture

Hardware Layer

EVE-EVC API - config, status, metrics, logs

EVErouter:
DHCP
DNS
ACLs

EVEagent:
config,
status,
metrics

Downloader

EVEmanager:
instance

orchestrator

Verifier
sha, sigs

HW
info,

metrics

Domain
mgr

dom0Crypto
device

identity

TEE/TPM

Measured
boot and
remote

attestation

Device
onboarding

Disk
encryption

TLS 1.2/1.3 + object signing

Baseos
manager

Grub gpt
priority

boot

Network
interface
manager

Device
connectivity Instance

connectivity

log
manager

Eth, RS 485, BTLE etc

local +
NAT

I/O virtualization
and

assignment

switch

Instance B

Instance C

Instance D

Driver domain(s)
Instance A

Edge Virtualization Engine

Eth, wlan,
wwan

Hardware
watchdog

Linux
watchdog

Remote instance local
consoles

Volume manager

Device Onboarding

› Cryptographic device identity is created when EVE installed (factory)
› Key pair generated in TPM; private key never leaves TPM
› Device is imprinted with the controller to trust (a root CA certificate)

› Different processes to extract device certificate, serial number(s) to
ship with hardware (depends on hardware vendor)

› Device can be pre-onboarded in factory to pre-install application
software content

› User registers their hardware using device certificate and/or serial
number
› Controller detects attempted duplicate registrations

› See https://github.com/lf-edge/eve/blob/master/docs/REGISTRATION.md

21

https://github.com/lf-edge/eve/blob/master/docs/REGISTRATION.md

Device Boot

› EVE is supporting different boot firmware implementations
› generic UEFI firmware on both x86 and ARM
› legacy PC BIOS on x86 (such as for Google Compute Platform)
› open source Coreboot via the legacy PC BIOS payload
› board specific u-boot firmware (such as on Raspberry Pi ARM platform)

› Uses GPT partition tables with A/B boot partitions for failover
› Performs measured boot and remote attestation

› Different measurements: require remote attestation to controller to unlock application
disks

› Same measurements: unlock and start applications even without controller connectivity
› See https://wiki.lfedge.org/display/EVE/Measured+Boot+and+Remote+Attestation
› Detects rouge firmware and unsupported EVE builds

› See https://github.com/lf-edge/eve/blob/master/docs/BOOTING.md

22

https://wiki.lfedge.org/display/EVE/Measured+Boot+and+Remote+Attestation
https://github.com/lf-edge/eve/blob/master/docs/BOOTING.md

Device Connectivity - Network Interface Manager

› Device must have some connectivity to the controller
› Can be redundant e.g., Ethernet plus LTE
› Can be active/active or active/standby

› Default is to initially try all Ethernets with DHCP to reach controller
› Can be overridden with a file on a USB key specifying

› static IPs, http proxies, WiFi credentials, etc
› Once controller is reached the controller will specify the device

connectivity parameters
› Any change to the parameters is tested by EVE

› verify controller is reachable before committing to new parameters
› See https://github.com/lf-edge/eve/blob/master/docs/DEVICE-CONNECTIVITY.md

23

https://github.com/lf-edge/eve/blob/master/docs/DEVICE-CONNECTIVITY.md

EVE Self Update - BaseOS manager

› Update all of EVE-OS including hypervisor
› Handle any failures

› Power failure when writing to flash
› Bad new EVE image resulting in not being able to connect to controller

› Controller specifies EVE image in API
› EVE downloads, verifies the SHA checksum, copies to partition, reboots
› Grub boot loader uses priority encoded in GPT partition

› on failure, timeout, or reset it switches back to previous partition
› EVE runs for 10 minutes to verify

› connectivity to controller, remote attestation completes, no EVE failures
› Then commit to the new EVE image

› See https://github.com/lf-edge/eve/blob/master/docs/BASEIMAGE-UPDATE.md
24

https://github.com/lf-edge/eve/blob/master/docs/BASEIMAGE-UPDATE.md

Ongoing EVE self-monitoring - watchdogs etc

› Hardware watchdog timer catches hardware that is stuck
› During initial boot of EVE, or during ongoing operation

› Software watchdog daemon verifies that EVE services run and are
responsive

› Watchdog(s) firing result in saving information and rebooting
› Should connectivity to the controller be lost for (default) one week

› Reboot EVE
› Needed to handle misbehaving network adapters and drivers

› Some monitoring of S.M.A.R.T. disk/SSD counters

25

EVE API

› Assumptions
› Asymmetric connectivity - need to phone home to controller
› Unpredictable connectivity - eventual consistency, compressible metrics
› Support both end-to-end security for OT safety, and enterprise IT

security concerns like content inspection
› Different API endpoints to enable scalability

› config, info/status, metrics, logs, flow logs, attestation
› Using TLS 1.2/1.3 plus end-to-end object signing
› User secrets additionally protected by end-to-end object encryption

› To avoid leaking e.g., datastore credentials and cloud-init secrets

26

API Security - Three Layers

27

Enterprise

1. TLS to trusted parties (controller and/or proxy)
2. End-to-end signature over payload (proxy can not modify)
3. Sensitive data encrypted end-to-end (also at rest)

EVE API Endpoints

› Different services:
› POST api/v1/edgedevice/register for device onboarding
› GET api/v1/edgedevice/ping for connectivity test
› GET api/v1/edgedevice/config for complete device + instance config
› POST api/v1/edgedevice/info for triggered device/instance status
› POST api/v1/edgedevice/metrics for periodic device/instance metrics
› POST api/v1/edgedevice/logs for logs from microservices on device
› POST api/v1/edgedevice/flowlog for ECO network flows logs

› All messages encoded using protobuf
› See https://github.com/lf-edge/eve/tree/master/api

28

https://github.com/lf-edge/eve/tree/master/api

App Runtime - domainmgr, containerd, and hypervisors

› Provide an abstraction over different container and VM runtimes
› EVE uses KVM hypervisor by default

› Xen and ACRN also work
› Open to other hypervisors; type 1 have smaller attack surface

› OCI containers can be run directly
› Without a hypervisor

› EVE abstracts resource assignment (CPU, memory) and usage metrics
› EVE abstracts I/O assignment (networking, PCI, serial, etc)

› Hypervisor tools chain used set up virtual network connectivity, and any
direct device assignment/passthrough

› See https://github.com/lf-edge/eve/blob/master/docs/TASKS.md
›

29

https://github.com/lf-edge/eve/blob/master/docs/TASKS.md

Storage and Volumes - volumemgr, downloader, verifier

› Four layers:
› datastores - where to get content (could be your http server, docker

hub, S3, Azure, etc)
› content trees - generalized OCI structure for layered content
› volumes - read-only or read-write for the applications
› deployment of applications will mount the volumes needed

› Controller provides meta-data (including sha checksums)
› EVE uses make-before-break when a volume needs to be refreshed

with new content (“purge” operation)
› Structuring your applications as OCI layers means smaller downloads
› See https://github.com/lf-edge/eve/blob/master/pkg/pillar/docs/volumemgr.md

30

https://github.com/lf-edge/eve/blob/master/pkg/pillar/docs/volumemgr.md

App Connectivity - zedrouter

› Different network connectivity options
› Switch connectivity for transparent L2 connectivity (IP and non-IP)
› Entirely local to host (between app instances), or local + NAT externally

› Network connectivity needs firewall rules - default deny
› Different I/O connectivity

› Assignment of a complete I/O device (NIC, audio, USB controller, GPU)
› Serial ports (RS 232, RS 485)

› Remote console to application from your web browser
› Can deploy e.g., SD-WAN as applications on EVE

› serving other applications and network ports
› See https://github.com/lf-edge/eve/blob/master/docs/NETWORK-MODELS.md

31

https://github.com/lf-edge/eve/blob/master/docs/NETWORK-MODELS.md

App Connectivity Example - securely connect legacy

32

Analytics

Local logger

EVE

FW: mqtt
outbound

Local only network

FW: mqtt
inbound

FW: modbus
inbound

FW: mqtt
inbound

eth1 eth0

FW: https
outbound

Cloud VPN

Firewall
rules

EVE management traffic

App Connectivity Example - high-performance
networking

33

EVE

Storage ServiceVirtual Router

FW: ssh,
https inbound

Local network

NAT + portmap

Eth dr

eth0

FW: ssh,
https inbound

FW: isci
outbound

FW: isci
inbound

Eth dr

eth1 eth2

DPDK

Device
passthrough

Local only network

EVE management
traffic

vEth dr

vEth dr vEth dr

vEth dr

Recent changes

› Metadata internal endpoint (accessible on
169.254.169.254/eve/v1/kubeconfig) to send data from the app instance
to EVC.

› Radio silence mode to disable all interfaces in danger areas
› Support for empty volumes to create them without downloading from

datastore
› Support for Intel VGA passthrough into Windows VM
› Work on expanding the list of supported ECO containers
› Generation of security keys during installation
› Reducing of network traffic

34

Open issues

› EVE-OS installation
› IPXE installation from GitHub/controller
› Scale installation of devices: network installation, installation data

(Inventory) collection
› Expand supported device (edge-nodes and connected devices) database
› Handle hardware/model variants better (with/without LTE, more disk or

memory, etc)

35

Open issues

› EVE-OS connectivity
› select and re-implement VPN connection type?
› geolocation using GPS
› support L2 network segmentation - VLANs
› reduce network traffic between controller and edge-node
› Link aggregation (LAG, bonding)?

36

Open issues

› EVE-OS configuration
› rework config partition: detach options for installer, rework partitions

layout
› workout ways to change config for fleet of devices during installation
› make config generator tools

37

Open issues

› EVE-OS observability
› better ways to access device to obtain debug info:

› allow only predefined subset of commands
› define commands to query device enumeration/capabilities/logs to identify

issues
› document best practices to get needed information from device

› work on filtering and aggregation of logs from device

38

Open issues

› EVE-OS objects
› support download resume
› pending changes and operations indication
› support unikernels
› support iso boot
› support ipxe boot
› support vTPM

39

Open issues

› EVE-OS testing
› expand tests with (v)TPM edge-nodes
› add arm64 targets

40

