
Next generation storage

Storage features required by a cloud provider

› Full disk encryption

› Thin provisioning
› Snapshoting

› Compression

› All the above is (or can be) covered by qcow2 in current
implementation

Current Storage overview

Guest Host Kernel

Qemu block
managment

New gen storage overview

Guest Host Kernel

Qemu block
managment

Next gen storage overview

QEMU

Host Kernel

NVME
emulated drive

(WIP)

VM
Kernel

App

NVME
vhost
(WIP)

/dev/nvme0

ZFS zvol
(/dev/zd0)

ZFS

ZFS current status

› Initial support in Eve:
› Software raid
› Image deploymend to edge nodes
› Zvols attached to VMs via scsi/vhost

› Lots and lots of benchmarking was done
› Autobench utility for unattended benchmarking
› Scripted (but still pretty involving) benchmarking from

the Eve debug container

ZFS current status

› Performs very well on liniar workloads enen on tiny machines
› Highly parallel workloads is a problem on smaller machines

(e.g Atom with 8GiB RAM)
› Latency on highly parallel workloads (4 jobs each submitting 16 requests at

once) reaches tens of _seconds_

ZFS efforts

3.4 tim
es

faster

Also faster then
raw disk (450 MiB/s)

ZFS efforts

ZFS efforts

ZFS efforts

ZFS efforts

ZFS next steps: storage health reports

› Revise current storage health reporting in Eve OS
› Add

› Reporting multiple disks
› S.M.A.R.T reporting
› Zpool status errors

› Collaborate with cloud team to establish protocol

ZFS WIP: 20% disk space reservation

“Pool performance can degrade when a pool is very full and
file systems are updated frequently, such as on a busy mail
server. Full pools might cause a performance penalty, but
no other issues. If the primary workload is immutable files,
then keep pool in the 95-96% utilization range. Even with
mostly static content in the 95-96% range, write, read, and
resilvering performance might suffer.”

From Oracle: Recommended Storage Pool Practices

https://docs.oracle.com/cd/E23823_01/html/819-5461/zfspools-4.html

Implementation: Direct IO
Read in ZFS (Big Picture)

› Buffered
› Cached? à Copy from ARC
› Issue to ZFS pipeline

› Copy to ARC
› Copy to user buffer

› Direct IO
› Bypass ARC
› User pages are directly mapped into an

ABD

ZPL

ARC

ZIO Pipeline

VDEV’s

DMU
Buffered Direct IO

Slide 16

Seq. Write Performance Results: ZFS NVMe Zpools

1.5-1.7x
Speedup

ZFS Future Ideas

› TaskQ and Thread Scaling
› Provides a knob to adjust how many TaskQ/Threads will be running

› Thread/CPU Pinning
› Duty Cycle Limiting

› Lowers thread priority if it takes to much of cpu time

› Async DMU / Async CoW
› Deferring the reads so writes are not blocked

› ZFS Block Reference Table
› Explicit files cloning (cp --reflink)

Shadow doorbell – paravirtualizable NVMe

› Updating Tail/Head registers are an MMIO operation
› Therefore each write generates vmexit
› NVMe 1.3 introduced ”shadow doorbell” concept
› If requested, Tail/Head registers are mirrored to a memory page
› Now Host OS can poll doorbells and process queus when it is

convinient, avoiding expencive vmexits
› This effectively makes NVMe a pravirtualized protocol out of the box

NVMe/VHOST current status

› Intial hoocking into NVMe fabric
machinery

› Functioning communication over
hardcoded Admin queue

› Working Guest Phisical -> Host Virtual translations in the vhost driver
› Guest recognizes the NVMe device, successfully issues commands to

create Submissions/Compleation queues, but operation fails (not
implemented)

NVME/VHOST next steps – Prototype

› Implement creation of data queus
› Rework Admin queue creation – move away from

hardcoded implementation
› Implement the minimum set of commands required to

operate under linux
› Implement Shadow Queue
› Make sure works with Windows

NVME/VHOST next steps – towards first product

› Submit RFC patches to the mailing list once Prototype phase is
ready

› Address comments, work on cleaning up hacks
› Run correctness tests, implement any missing bits an pieses

Some wild ideas: Vertical optimization

› ZFS worker threads per NVMe queue to improve cache locality
› ZFS objects exposed directly to virtual machine – paravirtualized

file system
› Split available memory in 2 parts - base system and virtual

machines. Allows to win back 400MiB on 25 GiB of ram dedicated
to VM.

› Image online deployment
› With zfs image deployment has to happen in 2 steps – download qcow2 and roll it

out to zvol
› There are multiple ways to do that online

Thank you!

Backup

ZFS benefits

› Boot Environments (Failsafe OS upgrades)
› ZFS Encryption (Take data offline and put it at rest)
› Online Expansion (Add more space without interruption)
› Quotas and Reservations
› ZFS Project IDs
› Resilience and Redundancy (Bitrot detection, Disk failure)

Why not LVM?

› LVM does support compression and thin provisioning, but the
performance penalty is very high, which kills the major benefit of
LVM-based solution

› Growing of the disk space takes a lot more steps in LVM (add disk,
grow volume group, grow logical volume, grow file system sitting on
the virtual media), which in generally can not be done online (or the
process is quite finicky and dangerous)

› LVM lacks quota support. Once a Logical Volume was allocated to a
container, you can't easily change the size of that volume. While in
filesystem base approach you would need only change the quota of
a dataset

NVMe background

NVMe background

Related work

› [RFC,v1] block/NVMe: introduce a new vhost NVMe host device
to QEMU

› Linux NVME-vhost driver by Ming Lin <ming.l@ssi.samsung.com>

https://patchwork.kernel.org/project/qemu-devel/patch/1516003315-17878-2-git-send-email-changpeng.liu@intel.com/
https://git.kernel.org/pub/scm/linux/kernel/git/mlin/linux.git/log/?h=vhost-nvme.0

