
Next generation storage

Storage features required by a cloud provider

› Full disk encryption

› Thin provisioning
› Snapshoting

› Compression

› All the above is (or can be) covered by qcow2 in current
implementation

Slide 2 of 46

Slide 3 of 46

Current Storage overview

Guest Host Kernel

Qemu block
managment

Slide 4 of 46

Problems with current implementation

› Limited support of transparent compression and thin provisioning
› Lack of multiple physical drive support
› Lack of quotas support
› Performance degradation with multiple VMs running on the system
› CPU and RAM consumption with multiple VMs running on the system
› Has no awareness of other qemu processes and their block caching

layers
› Proved to be notoriously difficult to optimize even for a single VM

Slide 5 of 46

New gen storage overview

Guest Host Kernel

Qemu block
managment

Slide 6 of 46

Next gen storage overview

QEMU

Host Kernel

NVME
emulated drive

(WIP)

VM
Kernel

App

NVME
vhost
(WIP)

/dev/nvme0

ZFS zvol
(/dev/zd0)

ZFS

Slide 7 of 46

Why not LVM?

› LVM does support compression and thin provisioning, but the
performance penalty is very high, which kills the major benefit of
LVM-based solution

› Growing of the disk space takes a lot more steps in LVM (add disk,
grow volume group, grow logical volume, grow file system sitting on
the virtual media), which in generally can not be done online (or the
process is quite finicky and dangerous)

› LVM lacks quota support. Once a Logical Volume was allocated to a
container, you can't easily change the size of that volume. While in
filesystem base approach you would need only change the quota of
a dataset

Slide 8 of 46

ZFS benefits

› Boot Environments (Failsafe OS upgrades)
› ZFS Encryption (Take data offline and put it at rest)
› Online Expansion (Add more space without interruption)
› Quotas and Reservations
› ZFS Project IDs
› Resilience and Redundancy (Bitrot detection, Disk failure)

Slide 9 of 46

ZFS current status

› Initial support in Eve:
› Software raid
› Image deploymend to edge nodes
› Zvols attached to VMs via scsi/vhost

› Lots and lots of benchmarking is done
› Autobench utility for unattended benchmarking
› Scripted (but still pretty involving) benchmarking from

the Eve debug container

Slide 10 of 46

Priorities

› NVMe/VHOST technologie gives us significanly more room for
vertical optimisation

› Efforts on ZFS and NVMe are not dependent on each other and
can be executed in parallel

› However ZFS answers current existing custorme pain
› Thererfore ZFS efforts have a higher priority
› However upgrade SCSI -> NVMe might cause problems if guest

OS is not using UUID (disk name will change e.g. sda1 ->
nvme0n1

Slide 11 of 46

Thechnologies overview

Technology Multiple Disks Online
expansion

Performance Resiliency

scsi-vhost + zfs 👍 👍
OK unless multiple
random access in

parallel
👍

NVMe-vhost + zfs 👍 👍
Better

(theoretically) 👍

lvm + vhost + md 👍 +/- Native 👍

qcow2-virtio ❌ ❌
Very good but at

the price of
resiliency

Good unless
sudden power

off is a frequent
case

Slide 12 of 46

ZFS current status

› Performs very well on liniar workloads enen on tiny machines
› Highly parallel workloads is a problem on smaller machines

(e.g Atom with 8GiB RAM)
› Latency on highly parallel workloads (4 jobs each submitting 16 requests at

once) reaches tens of _seconds_

Slide 13 of 46

ZFS Klara efforts

3.4 tim
es

faster

Also faster then
raw disk (450 MiB/s)

Slide 14 of 46

ZFS compression ratio

Tuned

Slide 15 of 46

Compression – CPU penalty

Host

Guest

Slide 16 of 46

ZFS compression ratios – FIO –refill_buffers

Tuned

Tuned-refill

Slide 17 of 46

ZFS Klara efforts

Slide 18 of 46

ZFS Klara efforts

Slide 19 of 46

ZFS Klara efforts

Slide 20 of 46

ZFS Klara efforts

Slide 21 of 46

ZFS Klara efforts

Slide 22 of 46

ZFS Klara efforts

Slide 23 of 46

ZFS Klara efforts - Summary

› Given the machine is powerfull enough, performance improvement
is dramatic (thanks to write amplification patch)

› ARC size manipulations allowed to reduce memory consumption
significanlty

› hard limit is 1.6 GiB to server 460 GiB storage

› Compression ratio 4 is not uncommon in real life, but even with
uncompressable data performance has noticably improoved

› Latency can still go really high, but sttdev and p99 are very low –
must be just a few outliers in the sample data

Slide 24 of 46

ZFS support – important missing pieces

› Disk and pool health reports
› Prevent pool from filling up more then 80 %
› Final bits of Klara’s effort

› Upstreaming patches (WIP)
› Tunable integration (WIP)

Slide 25 of 46

ZFS next steps: storage health reports

› Revise current storage health reporting in Eve OS
› Add

› Reporting multiple disks
› S.M.A.R.T reporting
› Zpool status errors

› Collaborate with cloud team to establish protocol

Slide 26 of 46

ZFS WIP: 20% disk space reservation

“Pool performance can degrade when a pool is very full and
file systems are updated frequently, such as on a busy mail
server. Full pools might cause a performance penalty, but
no other issues. If the primary workload is immutable files,
then keep pool in the 95-96% utilization range. Even with
mostly static content in the 95-96% range, write, read, and
resilvering performance might suffer.”

From Oracle: Recommended Storage Pool Practices

Slide 27 of 46

https://docs.oracle.com/cd/E23823_01/html/819-5461/zfspools-4.html

ZFS WIP: 20% disk space reservation

› Add a dummy data-set, whose only job is taking 20% of space
from the free space pool

› Will be keept empty all the time
› If pool does not have any free space, and user needs to

overwrite existing data, some blocks will be borrowed from the
dummy data-set to write new copies of modified blocks

› Eventually the original blocks will be freed and will be used to
pay the debt to dummy dataset

zfs create -o refreservation=(20% of space) poolname/reserved

Slide 28 of 46

ZFS deployment

› No transition for existing deployments, only newly created edge
nodes

› Therefore will have to support 2 architectures for a while
› Minimal supported configuration (e.g. no zfs on RaspberiPi)
› Pilot with customers who require software RAID

Slide 29 of 46

Implementation: Direct IO
Read in ZFS (Big Picture)

› Buffered
› Cached? à Copy from ARC
› Issue to ZFS pipeline

› Copy to ARC
› Copy to user buffer

› Direct IO
› Bypass ARC
› User pages are directly mapped into an

ABD

ZPL

ARC

ZIO Pipeline

VDEV’s

DMU
Buffered Direct IO

Slide 31

Implementation: Direct IO Write in ZFS (Big Picture)

User Buffer

ARC Buffer Sync Phase

Buffered IO Write Path

Direct IO Write Path

User Buffer

ZIO Pipeline

ZIO Pipeline Issue Write to VDEVs

Issue Write to VDEVs

Memcpy
Userspace -> Kernel space

Return Back
To Write Call

User Buffer

Return Back
To Write Call

Map
Userspace -> Kernel

space

Slide 32

Seq. Write Performance Results: ZFS NVMe Zpools

1.5-1.7x
Speedup

Slide 33

Seq. Read Performance Results: JBOD with ZFS

On traditional disks

direct io performance

is worse (generally)

ZFS future: Adaptive Compression depending on
system load

Host

Guest

Slide 34 of 46

ZFS Future Ideas

› TaskQ and Thread Scaling
› Provides a knob to adjust how many TaskQ/Threads will be running

› Thread/CPU Pinning
› Duty Cycle Limiting

› Lowers thread priority if it takes to much of cpu time

› Async DMU / Async CoW
› Deferring the reads so writes are not blocked

› ZFS Block Reference Table
› Explicit files cloning (cp --reflink)

Slide 35 of 46

ZFS Future Ideas: namespaces support

› Is it possible to make zfs threads aware from which cgroup the data
is coming?

› To reduce ”noisy neighbour” effects

Slide 36 of 46

NVMe background

Slide 37 of 46

NVMe background

Slide 38 of 46

Shadow doorbell – paravirtualizable NVMe

› Updating Tail/Head registers are an MMIO operation
› Therefore each write generates vmexit
› NVMe 1.3 introduced ”shadow doorbell” concept
› If requested, Tail/Head registers are mirrored to a memory page
› Now Host OS can poll doorbells and process queus when it is

convinient, avoiding expencive vmexits
› This effectively makes NVMe a pravirtualized protocol out of the box

Slide 39 of 46

NVMe/VHOST current status

› Intial hoocking into NVMe fabric
machinery

› Functioning communication over
hardcoded Admin queue

› Working Guest Phisical -> Host Virtual translations in the vhost driver
› Guest recognizes the NVMe device, successfully issues commands to

create Submissions/Compleation queues, but operation fails (not
implemented)

Slide 40 of 46

NVME/VHOST next steps – Prototype

› Implement creation of data queus
› Rework Admin queue creation – move away from

hardcoded implementation
› Implement the minimum set of commands required to

operate under linux
› Implement Shadow Queue
› Make sure works with Windows

Slide 41 of 46

NVME/VHOST next steps – towards first product

› Submit RFC patches to the mailing list once Prototype phase is
ready

› Address comments, work on cleaning up hacks
› Run correctness tests, implement any missing bits an pieses

Slide 42 of 46

Some wild ideas: Vertical optimization

› ZFS worker threads per NVMe queue to improve cache locality
› ZFS objects exposed directly to virtual machine – paravirtualized

file system
› Split available memory in 2 parts - base system and virtual

machines. Allows to win back 400MiB on 25 GiB of ram dedicated
to VM.

› Image online deployment
› With zfs image deployment has to happen in 2 steps – download qcow2 and roll it

out to zvol
› There are multiple ways to do that online

Slide 43 of 46

Tooling: Eve development builds

› Enabling some of the dangerous stuff
› E.g. configuration overrides (/config/storage.cfg)
› If onboarded should zcontrol should be showing lots of red

banners all the time showing this device is not supported

Slide 44 of 46

Improve testing coverage

› Block device correctness
› Sudden power off (semi-automated implementation exists,

integration in the proper test suit is required)
› FIO with data verification

Slide 45 of 46

Enable LAB for remote development

› Latencies US-Europe are insanely painful
› Would be cool to start buidling a LAB in Europe
› .. or fix the damn latency

› TrueNAS running in LAB network
› iSCSI/NFS/ftp boot
› Quick switch back and forth between different OS (e.g. Debian->EveOS->RHEL)
› Storing app images to not wait for ages while qcow2 is beeing downloaded

› Console access (to see boot messages, enter BIOS menu)
› Power controll
› One shared jump server to run tmux on

Slide 46 of 46

Thank you!

47

Backup

Slide 48 of 46

Related work

› [RFC,v1] block/NVMe: introduce a new vhost NVMe host device
to QEMU

› Linux NVME-vhost driver by Ming Lin <ming.l@ssi.samsung.com>

Slide 49 of 46

https://patchwork.kernel.org/project/qemu-devel/patch/1516003315-17878-2-git-send-email-changpeng.liu@intel.com/
https://git.kernel.org/pub/scm/linux/kernel/git/mlin/linux.git/log/?h=vhost-nvme.0

