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Executive Summary

• Signalogic is adding ASR (automatic speech recognition) to an 

Akraino blueprint
– key blueprint organizations: Fujitsu and Ritsumeikan University

• Robot compute resources are typically not sufficient for real-time, 

high accuracy, high vocabulary ASR

• Initial demo is a Roomba
– quad-core pico ITX board and battery “dead bugged” on a Roomba

– voice commands are processed and sent to the Roomba’s API via USB; e.g. “stop”, “come 
back later”, “turn left”, etc.
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Problems Facing Robotics ASR

• Robots are a quintessential edge application

– compute resources and power consumption are strictly limited. There is no “economy
of scale”

– operation cannot depend on continuous internet connectivity

• Human safety is paramount

– accuracy must be high – when someone says “stop, back up” robots must immediately 
do exactly that

• Edge data is private data

– Images and audio may contain identifying / proprietary information. Audio data 
cannot be sent to the cloud over a “long supply chain” of zones, regions, services
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Problems, example

• Why talk to your roomba through the cloud ?

– the “centralized cloud” model is based on huge scale, data collection, analytics, 
command and control, and complexity

– not based on energy and performance efficiency, safety, and data privacy
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Robot Needs

• Deal with environment at the edge

– respond to voice commands

– vision - avoid people, pets, property. Don’t break things

• Operate safely - don’t hurt anyone, don’t

damage property

– operate with zero trust in cloud commands –
the measurable physical situation always takes
precedence

– actively pursue and detect malware

• Share content with other edge nodes

– share private edge data – which will become
massive amounts as we go forward

• Energy and size constraints

– operate with 50 – 250 W power consumption, strive for “no fans”

– operate in small-form factor boxes: 1/2 1U, mini-ITX, smaller

“Beat it roomba, not now”
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Software – EdgeStream™ Platform

• Input from USB audio or RTP packets

– input from one more microphones

• Pre-processing (e.g. background noise removal)

– environment background noise

– robot noise, e.g. motors, wheels, brushes

• Application specific processing

– lawful intelligence / interception

– telecom

• ASR

• Output commands to connected devices as needed

– translate recognized text to command APIs
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EdgeStream Data Flow

• Per core data flow

– one thread per core

– no spinlocks

– precise control over power
consumption

• Real-time workflow

– packet handling

– media codecs

– signal processing

– user-defined processing

– inference

• Hardware acceleration

– DirectCore® option

– x86 and Arm options supported
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EdgeStream Workflow

•
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Comparison with DeepStream

• Packet Processing

– EdgeStream provides
telecom grade packet
processing, including…

– loss repair

– 500+ out-of-order
handling

– support for
encapsulated protocols

– multiple RFCs

– logging

• Media
– includes encoders in

addition to decoders

• Signal processing
– more user-defined

insertion points

DeepStream is a trademark of Nvidia Corp
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Comparison with GStreamer

• Thread architecture

– EdgeStream allocates one
workflow thread per core
(“unified thread”)

– GStreamer uses a thread
slicing architecture – flexible
but requires spinlocks

• Packet Processing

– EdgeStream provides telecom
grade packet processing,
including … 

– loss repair

– 500+ out-of-order
handling

– supports encapsulated
protocols

– multiple RFCs

– logging

Example GStreamer Workflow
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Hardware – EdgeStream™ Platform

• Pico ITX form-factor board

– 3.5” x 3.5” form-factor

– quad-core Atom, 10 to 20 W power
consumption

– integrated SSD, WiFi, HDMI, etc.

– no fan

– boots Ubuntu 20.04

• Essentially a “robot server”

– straightforward to develop code on
lab and cloud servers, then run on a
robot server

– lab / cloud servers can easily simulate
robot servers by controlling number
of cores and clock rate

– handles up to three (3) concurrent ASR
streams, or three (3) far-field microphones
for one stream, or a combination 



9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 13

EdgeStream Deployments

• Asia

– Japan

– India (ISRO)

– Australia

– New Zealand (OpenLI 1 support)

• Europe

– Germany

– Italy

– Czech Republic

• North America

– AFRL

– Raytheon

– Boeing

1 OpenLI is “Open Lawful Intercept” for CSPs. More info at https://openli.nz/

https://openli.nz/
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Github and Docker Hub

• Github

– SigSRF software page:  https://github.com/signalogic/SigSRF_SDK

– example command lines for reference apps and demos

– documentation

• Docker Hub

– ready-to-run Ubuntu and CentOS containers https://hub.docker.com/u/signalogic

• Demos and reference apps
– ready-to-run containers on Docker Hub, installation Rar packages on Github

– help with installing and running demos available over Skype (no charge)

• Source code
– developed entirely in US

– no dependencies on 3rd party libraries

https://github.com/signalogic/SigSRF_SDK
https://hub.docker.com/u/signalogic
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Thanks !

• Q&A

• Follow-up questions / comments:  info@signalogic.com

• Web page: https://signalogic.com/edgestream

mailto:info@signalogic.com
https://signalogic.com/edgestream
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Supplemental

• Following slides are background info …
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Overview

• SigSRF libraries

– codecs
• VoLTE (EVS, AMR-NB, AMR-WB)

• legacy (G729, EVRC, GSM, etc)

• mil/gov (MELPe)

– packet procesing
• media/SID packet repair (out-of-order, packet

loss, RTP timestamps)

• timing reconstruction of missing/damaged

arrival timestamps

• child streams (RFC8108)

– frame processing
• “stream groups” can be defined for related streams

• per-stream correction for overrun, underrun, gaps, bursts

• accurate time-aligned merging / mixing of multiple endpoints

• high capacity – multiple concurrent streams

• EdgeStream™ applications

– reference apps for customer-defined development

– also used as-is by many of our customers. Most common: telecom, LI, and ASR

– key features
• dynamic session creation

• packet push/pull API interface with SigSRF libs

• multiple streams from multiple sources

• flexible command line – similar to ffmpeg or sox
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Overview – Pipeline Flow

•
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Overview – Per Thread Data Flow

•

UDP
Input packets may be:

(i) buffered directly by p/m threads

(ii) pushed to input queues by applications

UDP

Output packets may be:

(i) sent directly by p/m threads
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Functionality – Packet Processing

• Media quality – packet level

– media/SID packet repair

• out-of-order (ooo)

• packet loss

• RTP timestamps

– child streams (RFC8108)

– timing reconstruction for missing/damaged
packet arrival timestamps

• Huge levels of ooo handled

– to support TCP encapsulated UDP/RTP, for
example lawful interception apps implementing
ETSI protocols

• Packet logging / tracing

– per stream packet logging

– timestamp reconciliation

– individual packet tracing

Ingress Packet info for SSRC = 0xbad52e64, first seq num = 3, last 

seq num = 651 ...

Seq num 4 ooo 3        timestamp = 1280, pkt len = 6 SID

Seq num 3 ooo 4        timestamp = 960, pkt len = 61

Seq num 5              timestamp = 3840, pkt len = 6 SID

Seq num 6              timestamp = 6400, pkt len = 6 SID

Seq num 7              timestamp = 8960, pkt len = 6 SID

Seq num 8              timestamp = 11520, pkt len = 6 SID

Seq num 9              timestamp = 14080, pkt len = 6 SID

Seq num 10              timestamp = 16640, pkt len = 6 SID

Seq num 12 ooo 11       timestamp = 18560, pkt len = 61

Seq num 15 ooo 12       timestamp = 19520, pkt len = 61

Seq num 11 ooo 13       timestamp = 18240, pkt len = 61

Seq num 13 ooo 14       timestamp = 18880, pkt len = 61

Seq num 14 ooo 15       timestamp = 19200, pkt len = 61

Seq num 18 ooo 16       timestamp = 20480, pkt len = 61

Seq num 19 ooo 17       timestamp = 20800, pkt len = 61

Seq num 16 ooo 18       timestamp = 19840, pkt len = 61

Seq num 21 ooo 19       timestamp = 21440, pkt len = 6 SID

Seq num 23 ooo 20       timestamp = 23680, pkt len = 61

Seq num 24 ooo 21       timestamp = 24000, pkt len = 61

Seq num 25 ooo 22       timestamp = 24320, pkt len = 61

Seq num 27 ooo 23       timestamp = 24960, pkt len = 61

Seq num 28 ooo 24       timestamp = 25280, pkt len = 61

Seq num 31 ooo 25       timestamp = 26240, pkt len = 61

Seq num 32 ooo 26       timestamp = 26560, pkt len = 61

Seq num 34 ooo 27       timestamp = 27200, pkt len = 61

Seq num 17 ooo 28       timestamp = 20160, pkt len = 61

Seq num 20 ooo 29       timestamp = 21120, pkt len = 61

Seq num 22 ooo 30       timestamp = 23360, pkt len = 61

Seq num 26 ooo 31       timestamp = 24640, pkt len = 61

Seq num 29 ooo 32       timestamp = 25600, pkt len = 61

Seq num 30 ooo 33       timestamp = 25920, pkt len = 61

Seq num 33 ooo 34       timestamp = 26880, pkt len = 61

Seq num 35              timestamp = 27520, pkt len = 61

Seq num 37 ooo 36       timestamp = 28160, pkt len = 61

Seq num 38 ooo 37       timestamp = 28480, pkt len = 61

Seq num 40 ooo 38       timestamp = 29120, pkt len = 61

Seq num 42 ooo 39       timestamp = 29760, pkt len = 61

Seq num 44 ooo 40       timestamp = 30400, pkt len = 61

Seq num 46 ooo 41       timestamp = 31040, pkt len = 61

Seq num 36 ooo 42       timestamp = 27840, pkt len = 61

Seq num 48 ooo 43       timestamp = 31680, pkt len = 61

Seq num 39 ooo 44       timestamp = 28800, pkt len = 61

Seq num 41 ooo 45       timestamp = 29440, pkt len = 61

Seq num 50 ooo 46       timestamp = 32320, pkt len = 61

Seq num 53 ooo 47       timestamp = 33280, pkt len = 61

Seq num 55 ooo 48       timestamp = 33920, pkt len = 61

Seq num 43 ooo 49       timestamp = 30080, pkt len = 61

Seq num 57 ooo 50       timestamp = 34560, pkt len = 61
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Packet Log Excerpt

•

Ingress Packet info for SSRC = 0xbad52e64, first seq num = 3, last 

seq num = 651 ...

Seq num 4 ooo 3        timestamp = 1280, pkt len = 6 SID

Seq num 3 ooo 4        timestamp = 960, pkt len = 61

Seq num 5              timestamp = 3840, pkt len = 6 SID

Seq num 6              timestamp = 6400, pkt len = 6 SID

Seq num 7              timestamp = 8960, pkt len = 6 SID

Seq num 8              timestamp = 11520, pkt len = 6 SID

Seq num 9              timestamp = 14080, pkt len = 6 SID

Seq num 10              timestamp = 16640, pkt len = 6 SID

Seq num 12 ooo 11       timestamp = 18560, pkt len = 61

Seq num 15 ooo 12       timestamp = 19520, pkt len = 61

Seq num 11 ooo 13       timestamp = 18240, pkt len = 61

Seq num 13 ooo 14       timestamp = 18880, pkt len = 61

Seq num 14 ooo 15       timestamp = 19200, pkt len = 61

Seq num 18 ooo 16       timestamp = 20480, pkt len = 61

Seq num 19 ooo 17       timestamp = 20800, pkt len = 61

Seq num 16 ooo 18       timestamp = 19840, pkt len = 61

Seq num 21 ooo 19       timestamp = 21440, pkt len = 6 SID

Seq num 23 ooo 20       timestamp = 23680, pkt len = 61

Seq num 24 ooo 21       timestamp = 24000, pkt len = 61

Seq num 25 ooo 22       timestamp = 24320, pkt len = 61

Seq num 27 ooo 23       timestamp = 24960, pkt len = 61

Seq num 28 ooo 24       timestamp = 25280, pkt len = 61

Seq num 31 ooo 25       timestamp = 26240, pkt len = 61

Seq num 32 ooo 26       timestamp = 26560, pkt len = 61

Seq num 34 ooo 27       timestamp = 27200, pkt len = 61

Seq num 17 ooo 28       timestamp = 20160, pkt len = 61

Seq num 20 ooo 29       timestamp = 21120, pkt len = 61

Seq num 22 ooo 30       timestamp = 23360, pkt len = 61

Seq num 26 ooo 31       timestamp = 24640, pkt len = 61

Seq num 29 ooo 32       timestamp = 25600, pkt len = 61

Seq num 30 ooo 33       timestamp = 25920, pkt len = 61

Seq num 33 ooo 34       timestamp = 26880, pkt len = 61

Seq num 35              timestamp = 27520, pkt len = 61

Seq num 37 ooo 36       timestamp = 28160, pkt len = 61

Seq num 38 ooo 37       timestamp = 28480, pkt len = 61

Seq num 40 ooo 38       timestamp = 29120, pkt len = 61

Seq num 42 ooo 39       timestamp = 29760, pkt len = 61

Seq num 44 ooo 40       timestamp = 30400, pkt len = 61

Seq num 46 ooo 41       timestamp = 31040, pkt len = 61

Seq num 36 ooo 42       timestamp = 27840, pkt len = 61

Seq num 48 ooo 43       timestamp = 31680, pkt len = 61

Seq num 39 ooo 44       timestamp = 28800, pkt len = 61

Seq num 41 ooo 45       timestamp = 29440, pkt len = 61

Seq num 50 ooo 46       timestamp = 32320, pkt len = 61

Seq num 53 ooo 47       timestamp = 33280, pkt len = 61

Seq num 55 ooo 48       timestamp = 33920, pkt len = 61

Seq num 43 ooo 49       timestamp = 30080, pkt len = 61

Seq num 57 ooo 50       timestamp = 34560, pkt len = 61

High amount of ooo (out-of-order) example
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Functionality – Frame Processing

• Decoded packet audio data

– buffered as frames (see Overview
diagrams)

– signal processing

• Media quality – frame level

– “stream groups” can be defined for
streams related in some way

– per-stream correction for overrun,
underrun, gaps, bursts

– accurate time-aligned merging /
mixing of multiple endpoints

• Real-time output streaming

– some applications require
real-time output, either per-stream
or merged between related
streams, typically in G711 format

– high intelligibility required – all streams fully merged (non-overlapped) and non-
duplicated as if all endpoints are in the same room

• High capacity – multiple concurrent streams
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Real-Time Streaming Output Example

•

Child streams example - early media (ring tones)

Reliable packet delta, no jitter over 1000s of hours of streaming
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Functionality – Applications

• Dynamic and static session creation

– sessions created and codecs detected on-the-fly using (i) RTP only (ii) SIP
invite packets (iii) .sdp files, or pre-set using static session config files

– RTP only uses heuristic codec type detection

• Packet push/pull interface to SigSRF libs

– reference application examples

– Packet pull includes transcoded output, real-time streaming output

• Event logging

– critical, major, minor, info, debug levels

– includes alerts for thread pre-emption, queue starvation, and other performance / 
data related conditions

– per-stream stats (i) on-demand, (ii) when streams close

• Arrival timestamp reconstruction

– if needed due to missing / damaged arrival timestamps

– algorithms based on queue balancing, decoded frame rate estimation
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Event Log Example

•

00:00:00.000.011 INFO: DSConfigPktlib() uflags = 0x7 

  P/M thread capacity  max sessions = 51, max groups = 17

  Event log            path = openli-voip-example_event_log_am.txt, uLogLevel = 8, uEventLogMode = 0x32, flush size = 1024, max size not set

  Debug                uDebugMode = 0x0, uPktStatsLogging = 0xd, uEnableDataObjectStats = 0x1

  Screen output        uPrintfLevel = 5, uPrintfControl = 0

  Energy saver         p/m thread energy saver inactivity time = 30000 msec, sleep time = 1000 usec

  Alarms               DSPushPackets packet cutoff alarm elapsed time not set, p/m thread preemption alarm elapsed time = 40 (msec)

00:00:00.000.721 INFO: DSConfigVoplib() voplib and codecs initialized, flags = 0x1d 

00:00:00.000.749 INFO: DSConfigStreamlib() stream groups initialized 

00:00:00.000.834 INFO: DSAssignPlatform() system CPU architecture supports rdtscp instruction, TSC integrity monitoring enabled 

00:00:00.000.953 INFO: DSOpenPcap() opened pcap input file: ../pcaps/openli-voip-example.pcap 

00:00:00.008.396 INFO: DSConfigMediaService() says setpriority() set Niceness to -15 for pkt/media thread 0 

00:00:00.008.418 INFO: initializing packet/media thread 0, uFlags = 0x1180101, threadid = 0x7f320f34a700, total num pkt/med threads = 1

00:00:00.058.474 mediaMin INFO: SIP invite found, dst port = 43333, pyld len = 1994, len = 717, rem = 1979, start = 8, index = 0 

o=02825591554 0 0 IN IP4 192.168.1.73

c=IN IP4 192.168.1.73

m=audio 5000 RTP/AVP 9 0 8 101

a=rtpmap:9 G722/8000

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:101 telephone-event/8000

a=extmap:1 urn:ietf:params:rtp-hdrext:csrc-audio-level

a=zrtp-hash:1.10 1c812535e276bf518418c4146a20fd56e715704da9c591ae32d58ee6fed6d40f

m=video 5002 RTP/AVP 96 99

a=recvonly

a=rtpmap:96 H264/90000

a=fmtp:96 profile-level-id=4DE01f;packetization-mode=1

a=imageattr:96 send * recv [x=[0-1920],y=[0-1080]]

a=rtpmap:99 H264/90000

a=fmtp:99 profile-level-id=4DE01f

a=imageattr:99 send * recv [x=[0-1920],y=[0-1080]]

a=zrtp-hash:1.10 c1a98e15f12937b9cad2488c6091468f7610efeefa59863c77d827669b913f38

00:00:00.058.644 INFO: DSFindDerStream() found HI interception point ID 10g-dev1, tag = 0x86, len = 8, dest port = 43332, pyld len = 1448, pyld ofs = 52

00:00:00.058.727 mediaMin INFO: Creating dynamic session 1, input #1, SDP specified codec type G711a, auto-detected bitrate 64000, stream group openli-

voip-example. Creation packet info: IP ver 4, ssrc = 0x14a50012, seq num = 32584, payload type 8, pkt len 200, RTP payload size 160, cat 0

00:00:00.058.781 INFO: DSCreateSession() created stream group "openli-voip-example", idx = 0, owner session = 0, status = 1 

Dynamic session creation
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Functionality – Codecs
• Multithreaded

– original 3GPP source modifications
• instance create, delete, modify implemented using XDAIS standard

• global data moved into per-instance “state structs”

– API interface
• voplib shared object (.so) library, C/C++ applications include voplib.h

• DSCodecCreate returns a codec handle, usable with DSCodecEncode and DSCodecDecode

• also with various codec-related APIs. Some examples:

– DSGetCodecSampleRate, DSGetCodecBitRate, DSGetCodecRawFrameSize, DSGetCodecCodedFrameSize, 

DSGetCodecInfo, DSGetSampleRateValue, DSGetPayloadSize, etc

• Optimization

– compiler optimizations

– pragmas

– XDAIS standard requires all memory allocation done up-front, so no real-time 
mallocs or spin-locks

• Testing

– unit / functional testing – mediaTest app, with audio I/O (wav and other audio 
format files, USB audio)

– capacity / stress testing – mediaMin app, with application packet push/pull APIs, 
pcap files, UDP port I/O)

– system testing – using mediaMin app, highlighted in “Overview” slides

– bit-exactness testing – comparison of floating-point reference vectors
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Functionality – Codec API

• voplib.h
– excerpt shown here

– available on Github page

– C/C++ compatible

/* codec instance definitions and APIs */

HCODEC DSCodecCreate(void* pCodecInfo, unsigned int uFlags); /* if DS_CC_USE_TERMINFO flag is given, pCodecInfo is interpreted as TERMINATION_INFO* (shared_include/session.h), otherwise as 
CODEC_PARAMS* (above) */

void DSCodecDelete(HCODEC hCodec);

int DSCodecEncode(HCODEC hCodec,
unsigned int uFlags,
uint8_t* inData,
uint8_t* outData,
uint32_t in_frameSize,
CODEC_OUTARGS* pOutArgs);

int DSCodecDecode(HCODEC hCodec,
unsigned int uFlags,
uint8_t* inData,
uint8_t* outData,
uint32_t in_frameSize, /* in bytes */
CODEC_OUTARGS* pOutArgs);

typedef struct { /* CODEC_ENC_PARAMS */

/* generic items */

int bitRate;
int samplingRate; /* most codecs are based on a fixed sampling rate so this is used only for advanced codecs such as EVS and Opus */
float frameSize; /* amount of data (in msec) processed by the codec per frame, for example 20 msec for AMR or EVS, 22.5 msec for MELPe, etc */

:
:

/* EVS, Opus, other advanced codec items */

int sid_update_interval; /* interval between SID frames when DTX is enabled */
int rf_enable; /* channel-aware mode (for EVS only supported at 13.2 kbps) */
int fec_indicator; /* for EVS, LO = 0, HI = 1 */
int fec_offset; /* for EVS, 2, 3, 5, or 7 in number of frames */
int bandwidth_limit; /* for EVS, typically set to SWB or FB */

:
:

} CODEC_ENC_PARAMS;

typedef struct { /* CODEC_DEC_PARAMS */

/* generic items */

int bitRate; /* bitrate may not be used for codecs that can derive it from payload contents */
int samplingRate; /* not used for most codecs */
float frameSize; /* amount of data (in msec) processed by the codec per frame, for example 20 msec for AMR or EVS, 22.5 msec for MELPe, etc */

:
:

} CODEC_DEC_PARAMS;
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Functionality - Customer-Specific

• Customers often ask us to incorporate / develop specific signal 

processing. Some examples:

– “deduplication” due to multiple copies of the same endpoint (with different 
latencies)

– removing room echo / reverb

– reducing background noise

• Typically a substantial impact on performance

• Speech recognition (ASR)

– training is ultra sensitive to small changes in
audio characteristics

– production systems are trained with wide
variety of “augmentations”, including
background noise and babble, loud and quiet
speech, frequency warping, etc.

– preprocessing to normalize speech input
decreases reliance on augmentation training
and increases accuracy

– major impact on performance; for real-time applications, concurrent streams may 
be reduced 10x



9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 29

Capacity

• Performance optimized per box / VM / container

– for specified core type and clock rate, we spec a max number of concurrent 
streams per core. For codecs sample rate and bitrate also specified

– extensive use of htop to analyze and verify

– we observe telecom norms – Signalogic has a long history of applications coded
for high capacity, real-time performance

• Codecs

– in addition to core type and clock rate, sample rate and bitrate must also be 
specified

– https://www.signalogic.com/evs_codec has a Capacity Figure table for EVS on x86

https://www.signalogic.com/evs_codec
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Capacity, cont.

• Extensive use of htop and to analyze / debug core usage
– hyperthreading must be disabled

– stream groups must not cross core boundaries

– look for memory leaks

htop screen capture showing

packet/media threads

application threads

disabled hyperthread cores
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Capacity, cont.

• Optimized for Linux
– Linux poses performance challenges - not deterministic, not an RTOS

– carriers and LEAs understand “software defined solutions” are not deterministic,
but still expect high capacity / reliability

– software detects and alarms “thread preemption” – possible performance
impairment due to Linux housekeeping and other user applications

• GPUs and DPDK 1 may or may not be helpful

– GPUs
• don’t help with packet processing

• only “matrix expressible” operations can be easily accelerated

• can help with some codecs, but accelerating an entire codec is labor-intensive and requires hand-coding

– DPDK
• useful when combined with high-rate packet I/O hardware

• for PCIe accelerator cards, each x86 core needs a dedicated lane to avoid thread locks

1 Data Plane Development Kit – refers to non-Linux x86 cores dedicated to packet processing
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Reliability and Testing
• Carriers and LEAs obsess about reliability

– very long calls are common. All possible packet and audio data buffers and wrap 
conditions that could occur must be tested

– as with capacity, we pay attention to telecom requirements. “5 9s” up time is a 
minimum

• Customers run stress tests for weeks at a time

– we run stress tests continuously for 6+ months

– tests include pcaps with artificial wraps, 10x packet push rates, deliberate thread 
preemptions, more

– tests run at max capacity ratings

– currently we run tests on Ubuntu 12.04 gcc++ 4.6.4 thru 20.04 gcc++ 9.3.0. Testing can 
be provided on CentOS systems as needed

• Extensive use of htop and valgrind
– thorough and painstaking search for memory leaks

• Software is designed for high reliability

– profiling and performance monitoring

– alarms include data flow anomalies, thread preemption

– event and packet logging

– telemetry
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Audio Quality

• Certain customers obsess over audio quality
– we have observed customers using metronomes and whale sounds to verify

timing and frequency integrity when testing endpoints

• “No sound left behind”
– we enhance audio quality by detecting and repairing:

• packet problems (lost packets, out-of-order, gaps, bursts)

• stream timing (overrun, underrun, child streams)

• Debug capability to identify root cause (CSP, cloud, or vendor)
– audio quality is complex and subjective; ability to identify root cause is crucial

Frequency domain analysis 

and corresponding Wireshark 

packet capture
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Audio Quality Challenges

• Encapsulation artifacts

– encapsulation packet rate may be very different than original audio RTP packet 
rate - slow, fast, variable. We’ve seen up to ±15%

– extreme bursts of ooo (out-of-order) packets, 20-50 packets not uncommon

• Streams not time-aligned

– artifacts and child streams distributed unevenly between streams

– media playout servers are particularly bad offenders

Multiple Wireshark 

captures showing 

stream merging of 3 

endpoints
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Audio Quality Verification and Debug

• Test case verification

– analysis and debug tools can pinpoint whether it’s CSP, cloud,or handset issue

– visual audio markers can be enabled to verify timing, frame repair, etc. Different 
types of markers are supported

Wireshark screen 

capture showing 

audio markers 

inserted by software
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Media Content Processing

• Content analysis and signal processing

– artifact detection

– background noise reduction

– detecting and avoiding conversation overlap (correcting
time alignment between streams in a stream group)

– stream deduplication

• Content recognition

– speech recognition

– speaker identification

– we use Kaldi open source

– requires tradeoff between capacity and real-time processing

• RTP malware detection

– malware payloads can hide in codec packets

– no way to differentiate “ordinary bad voice” from “deliberate bad voice” without 
extensive analysis of fully decoded packets
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Current R&D
• Edge Computing

– ongoing PoCs and LF Edge blueprints demonstrating hybrid cloud, enhanced 
privacy / security

– many telecom carriers do not trust security in public clouds

• ASR (Automatic Speech Recognition)

– can be done in real-time, but substantially less capacity

– not yet in real-time: individual speaker identification and transcription, known
as “diarization”

– potential to reduce workloads, accurately alert on “conversations
of interest”

– open source accuracy only a few % WER2 more than proprietary code bases

• Telecom migration to public cloud

– containerized solutions needed

– LI is a particular problem due to encryption requirements

– allow CICD1, for example improving ASR accuracy with “on the fly” training
based on collected data

1 Continuous Integration, Continuous Deployment
2 WER = Word Error Rate
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Edge Computing + Containerization

KubeEdge ASR Offloading 

© Signalogic 2020

Rev 1, Aug 2020
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     -stream alignment

     -conferencing and merging
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Non Real-Time

  Diarization – not possible in real-time yet
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ASR Basics

• Deep Learning Architecture
– combines previous generation

xMM1 technology with DNNs
(Deep Neural Networks)

– relies on extensive training and
“augmentation” methods

– Kaldi open source is basis for Alexa,
Google Home, and Cortana

• Frequency domain “images”
– formed by sliding FFT analysis of

incoming time series data. Each
FFT frame output is similar
to cochlea in human ears

– groups of FFT frames form images

– successive images are called
“TDNN” (time delayed DNN),
similar to series of CNNs2

DNN Input Layers (ILn)

Sliding FFT
time domain (time series)

frequency domain

1 Hidden Markov Model, Gaussian Mixed Model, 2 Convolutional Neural Network
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Containers and Kubernetes

• Packet + media + ASR inside container
– minimum 2 x86 cores, 32 GB mem, 1 TB HDD can handle 32 sessions

– a session is wideband decode (e.g. EVS), jitter buffer, stream merging up to 8 
stream groups, G711 pcap output, wideband wav file output

– scales up linearly with more cores

• Field apps
– create sessions with REST APIs

– stream UDP/IP packets using gRPC

– offload processing to “edge cloud”

Edge Node

Linux

Master

ControllerREST 

API 

Server Scheduler

Kubelet

Control Plane APIs

Telco 5G 

Network

Networking

Media / 

packet 

threads Kaldi Libs

SigSRF Libs

RTP audio

ASR text



ETSI Diagram – Vendor Software Mapping
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LI Perspective

• ETSI LI Terminology:  CC mediation (communication content), HI2 and HI3 
(Handover Interfaces)

• Packet Handling
– Jitter buffer, packet repair, rate adjustment

• Media
– Decoding (AMR, AMR-WB, EVS, more), stream alignment

• Signal Processing
– Stream merging, conferencing, speech recognition

Warrants


