
9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 1

Signalogic, Inc.
Dallas, Texas

Adding ASR to an Akraino
Robot

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 2

Contents

• Executive Summary

• Problems
– cloud computing is not edge computing
– long “supply chain” from cloud to edge

• Robot Needs
– deal with environment at the edge
– operate safely – don’t hurt anyone, don’t damage property. Operate with zero

trust in cloud commands
– operate with energy and size constraints

• EdgeStream™ - Software
– optimized on per thread basis, one thread per core, no spinlocks

– packet processing, media codecs, signal processing, inference

– comparison with DeepStream and GStreamer

• EdgeStream™ - Hardware
– pico ITX form factor: 3.5” x 3.5”

– quad-core Atom, no fan

• Deployments

• Github and Docker Hub
– Demos, reference apps, ready-to-run containers, example command lines
– Source code

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 3

Executive Summary

• Signalogic is adding ASR (automatic speech recognition) to an

Akraino blueprint
– key blueprint organizations: Fujitsu and Ritsumeikan University

• Robot compute resources are typically not sufficient for real-time,

high accuracy, high vocabulary ASR

• Initial demo is a Roomba
– quad-core pico ITX board and battery “dead bugged” on a Roomba

– voice commands are processed and sent to the Roomba’s API via USB; e.g. “stop”, “come
back later”, “turn left”, etc.

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 4

Problems Facing Robotics ASR

• Robots are a quintessential edge application

– compute resources and power consumption are strictly limited. There is no “economy
of scale”

– operation cannot depend on continuous internet connectivity

• Human safety is paramount

– accuracy must be high – when someone says “stop, back up” robots must immediately
do exactly that

• Edge data is private data

– Images and audio may contain identifying / proprietary information. Audio data
cannot be sent to the cloud over a “long supply chain” of zones, regions, services

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 5

Problems, example

• Why talk to your roomba through the cloud ?

– the “centralized cloud” model is based on huge scale, data collection, analytics,
command and control, and complexity

– not based on energy and performance efficiency, safety, and data privacy

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 6

Robot Needs

• Deal with environment at the edge

– respond to voice commands

– vision - avoid people, pets, property. Don’t break things

• Operate safely - don’t hurt anyone, don’t

damage property

– operate with zero trust in cloud commands –
the measurable physical situation always takes
precedence

– actively pursue and detect malware

• Share content with other edge nodes

– share private edge data – which will become
massive amounts as we go forward

• Energy and size constraints

– operate with 50 – 250 W power consumption, strive for “no fans”

– operate in small-form factor boxes: 1/2 1U, mini-ITX, smaller

“Beat it roomba, not now”

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 7

Software – EdgeStream™ Platform

• Input from USB audio or RTP packets

– input from one more microphones

• Pre-processing (e.g. background noise removal)

– environment background noise

– robot noise, e.g. motors, wheels, brushes

• Application specific processing

– lawful intelligence / interception

– telecom

• ASR

• Output commands to connected devices as needed

– translate recognized text to command APIs

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 8

EdgeStream Data Flow

• Per core data flow

– one thread per core

– no spinlocks

– precise control over power
consumption

• Real-time workflow

– packet handling

– media codecs

– signal processing

– user-defined processing

– inference

• Hardware acceleration

– DirectCore® option

– x86 and Arm options supported

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 9

EdgeStream Workflow

•

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 10

Comparison with DeepStream

• Packet Processing

– EdgeStream provides
telecom grade packet
processing, including…

– loss repair

– 500+ out-of-order
handling

– support for
encapsulated protocols

– multiple RFCs

– logging

• Media
– includes encoders in

addition to decoders

• Signal processing
– more user-defined

insertion points

DeepStream is a trademark of Nvidia Corp

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 11

Comparison with GStreamer

• Thread architecture

– EdgeStream allocates one
workflow thread per core
(“unified thread”)

– GStreamer uses a thread
slicing architecture – flexible
but requires spinlocks

• Packet Processing

– EdgeStream provides telecom
grade packet processing,
including …

– loss repair

– 500+ out-of-order
handling

– supports encapsulated
protocols

– multiple RFCs

– logging

Example GStreamer Workflow

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 12

Hardware – EdgeStream™ Platform

• Pico ITX form-factor board

– 3.5” x 3.5” form-factor

– quad-core Atom, 10 to 20 W power
consumption

– integrated SSD, WiFi, HDMI, etc.

– no fan

– boots Ubuntu 20.04

• Essentially a “robot server”

– straightforward to develop code on
lab and cloud servers, then run on a
robot server

– lab / cloud servers can easily simulate
robot servers by controlling number
of cores and clock rate

– handles up to three (3) concurrent ASR
streams, or three (3) far-field microphones
for one stream, or a combination

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 13

EdgeStream Deployments

• Asia

– Japan

– India (ISRO)

– Australia

– New Zealand (OpenLI 1 support)

• Europe

– Germany

– Italy

– Czech Republic

• North America

– AFRL

– Raytheon

– Boeing

1 OpenLI is “Open Lawful Intercept” for CSPs. More info at https://openli.nz/

https://openli.nz/

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 14

Github and Docker Hub

• Github

– SigSRF software page: https://github.com/signalogic/SigSRF_SDK

– example command lines for reference apps and demos

– documentation

• Docker Hub

– ready-to-run Ubuntu and CentOS containers https://hub.docker.com/u/signalogic

• Demos and reference apps
– ready-to-run containers on Docker Hub, installation Rar packages on Github

– help with installing and running demos available over Skype (no charge)

• Source code
– developed entirely in US

– no dependencies on 3rd party libraries

https://github.com/signalogic/SigSRF_SDK
https://hub.docker.com/u/signalogic

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 15

Thanks !

• Q&A

• Follow-up questions / comments: info@signalogic.com

• Web page: https://signalogic.com/edgestream

mailto:info@signalogic.com
https://signalogic.com/edgestream

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 16

Supplemental

• Following slides are background info …

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 17

Overview

• SigSRF libraries

– codecs
• VoLTE (EVS, AMR-NB, AMR-WB)

• legacy (G729, EVRC, GSM, etc)

• mil/gov (MELPe)

– packet procesing
• media/SID packet repair (out-of-order, packet

loss, RTP timestamps)

• timing reconstruction of missing/damaged

arrival timestamps

• child streams (RFC8108)

– frame processing
• “stream groups” can be defined for related streams

• per-stream correction for overrun, underrun, gaps, bursts

• accurate time-aligned merging / mixing of multiple endpoints

• high capacity – multiple concurrent streams

• EdgeStream™ applications

– reference apps for customer-defined development

– also used as-is by many of our customers. Most common: telecom, LI, and ASR

– key features
• dynamic session creation

• packet push/pull API interface with SigSRF libs

• multiple streams from multiple sources

• flexible command line – similar to ffmpeg or sox

Decoders

H.264, EVS,

AMR, etc

Input

Packet Buffers

Packet

Processing

Repair (loss,

time stamps,

out-of-order),

Filtering,

RFC8108,

 DTX handling

Network / cloud

File

APIs

Pre Signal

Processing

Fs Conv,

media

quality

enhncmt

Output

Packet Buffers

Frame Buffers

Encoders

H.264, EVS,

AMR, G711,

etc

SigSRF Multithreaded

Pipeline

USB audio

Camera

wav files

text

AI Processing

ASR, CNN

User Defined

Processing
Post Signal

Processing

Stream merge,

frame rate

adjustment, Fs

Conv, FFT, etc

Per Stream

Buffers

I/O Media

Streams

Per Channel

Buffers

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 18

Overview – Pipeline Flow

•

Decoders

H.264, EVS,

AMR, etc

Input

Packet Buffers

Packet

Processing

Repair (loss,

time stamps,

out-of-order),

Filtering,

RFC8108,

 DTX handling

Network / cloud

File

APIs

Pre Signal

Processing

Fs Conv,

media

quality

enhncmt

Output

Packet Buffers

Frame Buffers

Encoders

H.264, EVS,

AMR, G711,

etc

SigSRF Multithreaded

Pipeline

USB audio

Camera

wav files

text

AI Processing

ASR, CNN

User Defined

Processing
Post Signal

Processing

Stream merge,

frame rate

adjustment, Fs

Conv, FFT, etc

Per Stream

Buffers

I/O Media

Streams

Per Channel

Buffers

Codecs

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 19

Overview – Per Thread Data Flow

•

UDP
Input packets may be:

(i) buffered directly by p/m threads

(ii) pushed to input queues by applications

UDP

Output packets may be:

(i) sent directly by p/m threads

(ii) pulled from output queues by applications

Packet / Media Threads

Jitter Buffer 0..N-1

Stream Groups 0..M-1

Session Data Structs

 -SESSION_DATA

 -TERMINATION_INFO

 -media attributes

Output Packet

Queues

DSPullPackets()DSPushPackets()
DSCreateSession()

DSSet/GetSessionInfo()

DSDeleteSession()

Jitter
Buffer
Add

Decode
Fs

Conv

Encode

Stream 0

Stream 1

 :

Input Packet

Queues

Stream N-1

DTX

SID repair

Pktlib APIs

DTMF

Text or analytics output

Packet
Loss

Monitor
ptime ptime

Jitter
Buffer
Get

 Stream

 Groups

 -merging, conf

 -audio quality
1

1
Gap management, FLC (frame loss concealment)

2
Includes user-defined signal processing

3
Automatic Speech Recognition

RFC8108

channel

creation

Transcoded 0..N-1

Pcap Files

TCP

UDP

 Media Domain

 Processing

 -signal processing
2

 -ASR
3

Fs

Conv

Encode

Applications
 -user-defined

 -mediaMin and mediaTest reference apps

pktlib
voplib
streamlib

wav file, other audio format files

Compressed data files

Codecs

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 20

Functionality – Packet Processing

• Media quality – packet level

– media/SID packet repair

• out-of-order (ooo)

• packet loss

• RTP timestamps

– child streams (RFC8108)

– timing reconstruction for missing/damaged
packet arrival timestamps

• Huge levels of ooo handled

– to support TCP encapsulated UDP/RTP, for
example lawful interception apps implementing
ETSI protocols

• Packet logging / tracing

– per stream packet logging

– timestamp reconciliation

– individual packet tracing

Ingress Packet info for SSRC = 0xbad52e64, first seq num = 3, last

seq num = 651 ...

Seq num 4 ooo 3 timestamp = 1280, pkt len = 6 SID

Seq num 3 ooo 4 timestamp = 960, pkt len = 61

Seq num 5 timestamp = 3840, pkt len = 6 SID

Seq num 6 timestamp = 6400, pkt len = 6 SID

Seq num 7 timestamp = 8960, pkt len = 6 SID

Seq num 8 timestamp = 11520, pkt len = 6 SID

Seq num 9 timestamp = 14080, pkt len = 6 SID

Seq num 10 timestamp = 16640, pkt len = 6 SID

Seq num 12 ooo 11 timestamp = 18560, pkt len = 61

Seq num 15 ooo 12 timestamp = 19520, pkt len = 61

Seq num 11 ooo 13 timestamp = 18240, pkt len = 61

Seq num 13 ooo 14 timestamp = 18880, pkt len = 61

Seq num 14 ooo 15 timestamp = 19200, pkt len = 61

Seq num 18 ooo 16 timestamp = 20480, pkt len = 61

Seq num 19 ooo 17 timestamp = 20800, pkt len = 61

Seq num 16 ooo 18 timestamp = 19840, pkt len = 61

Seq num 21 ooo 19 timestamp = 21440, pkt len = 6 SID

Seq num 23 ooo 20 timestamp = 23680, pkt len = 61

Seq num 24 ooo 21 timestamp = 24000, pkt len = 61

Seq num 25 ooo 22 timestamp = 24320, pkt len = 61

Seq num 27 ooo 23 timestamp = 24960, pkt len = 61

Seq num 28 ooo 24 timestamp = 25280, pkt len = 61

Seq num 31 ooo 25 timestamp = 26240, pkt len = 61

Seq num 32 ooo 26 timestamp = 26560, pkt len = 61

Seq num 34 ooo 27 timestamp = 27200, pkt len = 61

Seq num 17 ooo 28 timestamp = 20160, pkt len = 61

Seq num 20 ooo 29 timestamp = 21120, pkt len = 61

Seq num 22 ooo 30 timestamp = 23360, pkt len = 61

Seq num 26 ooo 31 timestamp = 24640, pkt len = 61

Seq num 29 ooo 32 timestamp = 25600, pkt len = 61

Seq num 30 ooo 33 timestamp = 25920, pkt len = 61

Seq num 33 ooo 34 timestamp = 26880, pkt len = 61

Seq num 35 timestamp = 27520, pkt len = 61

Seq num 37 ooo 36 timestamp = 28160, pkt len = 61

Seq num 38 ooo 37 timestamp = 28480, pkt len = 61

Seq num 40 ooo 38 timestamp = 29120, pkt len = 61

Seq num 42 ooo 39 timestamp = 29760, pkt len = 61

Seq num 44 ooo 40 timestamp = 30400, pkt len = 61

Seq num 46 ooo 41 timestamp = 31040, pkt len = 61

Seq num 36 ooo 42 timestamp = 27840, pkt len = 61

Seq num 48 ooo 43 timestamp = 31680, pkt len = 61

Seq num 39 ooo 44 timestamp = 28800, pkt len = 61

Seq num 41 ooo 45 timestamp = 29440, pkt len = 61

Seq num 50 ooo 46 timestamp = 32320, pkt len = 61

Seq num 53 ooo 47 timestamp = 33280, pkt len = 61

Seq num 55 ooo 48 timestamp = 33920, pkt len = 61

Seq num 43 ooo 49 timestamp = 30080, pkt len = 61

Seq num 57 ooo 50 timestamp = 34560, pkt len = 61

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 21

Packet Log Excerpt

•

Ingress Packet info for SSRC = 0xbad52e64, first seq num = 3, last

seq num = 651 ...

Seq num 4 ooo 3 timestamp = 1280, pkt len = 6 SID

Seq num 3 ooo 4 timestamp = 960, pkt len = 61

Seq num 5 timestamp = 3840, pkt len = 6 SID

Seq num 6 timestamp = 6400, pkt len = 6 SID

Seq num 7 timestamp = 8960, pkt len = 6 SID

Seq num 8 timestamp = 11520, pkt len = 6 SID

Seq num 9 timestamp = 14080, pkt len = 6 SID

Seq num 10 timestamp = 16640, pkt len = 6 SID

Seq num 12 ooo 11 timestamp = 18560, pkt len = 61

Seq num 15 ooo 12 timestamp = 19520, pkt len = 61

Seq num 11 ooo 13 timestamp = 18240, pkt len = 61

Seq num 13 ooo 14 timestamp = 18880, pkt len = 61

Seq num 14 ooo 15 timestamp = 19200, pkt len = 61

Seq num 18 ooo 16 timestamp = 20480, pkt len = 61

Seq num 19 ooo 17 timestamp = 20800, pkt len = 61

Seq num 16 ooo 18 timestamp = 19840, pkt len = 61

Seq num 21 ooo 19 timestamp = 21440, pkt len = 6 SID

Seq num 23 ooo 20 timestamp = 23680, pkt len = 61

Seq num 24 ooo 21 timestamp = 24000, pkt len = 61

Seq num 25 ooo 22 timestamp = 24320, pkt len = 61

Seq num 27 ooo 23 timestamp = 24960, pkt len = 61

Seq num 28 ooo 24 timestamp = 25280, pkt len = 61

Seq num 31 ooo 25 timestamp = 26240, pkt len = 61

Seq num 32 ooo 26 timestamp = 26560, pkt len = 61

Seq num 34 ooo 27 timestamp = 27200, pkt len = 61

Seq num 17 ooo 28 timestamp = 20160, pkt len = 61

Seq num 20 ooo 29 timestamp = 21120, pkt len = 61

Seq num 22 ooo 30 timestamp = 23360, pkt len = 61

Seq num 26 ooo 31 timestamp = 24640, pkt len = 61

Seq num 29 ooo 32 timestamp = 25600, pkt len = 61

Seq num 30 ooo 33 timestamp = 25920, pkt len = 61

Seq num 33 ooo 34 timestamp = 26880, pkt len = 61

Seq num 35 timestamp = 27520, pkt len = 61

Seq num 37 ooo 36 timestamp = 28160, pkt len = 61

Seq num 38 ooo 37 timestamp = 28480, pkt len = 61

Seq num 40 ooo 38 timestamp = 29120, pkt len = 61

Seq num 42 ooo 39 timestamp = 29760, pkt len = 61

Seq num 44 ooo 40 timestamp = 30400, pkt len = 61

Seq num 46 ooo 41 timestamp = 31040, pkt len = 61

Seq num 36 ooo 42 timestamp = 27840, pkt len = 61

Seq num 48 ooo 43 timestamp = 31680, pkt len = 61

Seq num 39 ooo 44 timestamp = 28800, pkt len = 61

Seq num 41 ooo 45 timestamp = 29440, pkt len = 61

Seq num 50 ooo 46 timestamp = 32320, pkt len = 61

Seq num 53 ooo 47 timestamp = 33280, pkt len = 61

Seq num 55 ooo 48 timestamp = 33920, pkt len = 61

Seq num 43 ooo 49 timestamp = 30080, pkt len = 61

Seq num 57 ooo 50 timestamp = 34560, pkt len = 61

High amount of ooo (out-of-order) example

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 22

Functionality – Frame Processing

• Decoded packet audio data

– buffered as frames (see Overview
diagrams)

– signal processing

• Media quality – frame level

– “stream groups” can be defined for
streams related in some way

– per-stream correction for overrun,
underrun, gaps, bursts

– accurate time-aligned merging /
mixing of multiple endpoints

• Real-time output streaming

– some applications require
real-time output, either per-stream
or merged between related
streams, typically in G711 format

– high intelligibility required – all streams fully merged (non-overlapped) and non-
duplicated as if all endpoints are in the same room

• High capacity – multiple concurrent streams

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 23

Real-Time Streaming Output Example

•

Child streams example - early media (ring tones)

Reliable packet delta, no jitter over 1000s of hours of streaming

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 24

Functionality – Applications

• Dynamic and static session creation

– sessions created and codecs detected on-the-fly using (i) RTP only (ii) SIP
invite packets (iii) .sdp files, or pre-set using static session config files

– RTP only uses heuristic codec type detection

• Packet push/pull interface to SigSRF libs

– reference application examples

– Packet pull includes transcoded output, real-time streaming output

• Event logging

– critical, major, minor, info, debug levels

– includes alerts for thread pre-emption, queue starvation, and other performance /
data related conditions

– per-stream stats (i) on-demand, (ii) when streams close

• Arrival timestamp reconstruction

– if needed due to missing / damaged arrival timestamps

– algorithms based on queue balancing, decoded frame rate estimation

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 25

Event Log Example

•

00:00:00.000.011 INFO: DSConfigPktlib() uflags = 0x7

 P/M thread capacity max sessions = 51, max groups = 17

 Event log path = openli-voip-example_event_log_am.txt, uLogLevel = 8, uEventLogMode = 0x32, flush size = 1024, max size not set

 Debug uDebugMode = 0x0, uPktStatsLogging = 0xd, uEnableDataObjectStats = 0x1

 Screen output uPrintfLevel = 5, uPrintfControl = 0

 Energy saver p/m thread energy saver inactivity time = 30000 msec, sleep time = 1000 usec

 Alarms DSPushPackets packet cutoff alarm elapsed time not set, p/m thread preemption alarm elapsed time = 40 (msec)

00:00:00.000.721 INFO: DSConfigVoplib() voplib and codecs initialized, flags = 0x1d

00:00:00.000.749 INFO: DSConfigStreamlib() stream groups initialized

00:00:00.000.834 INFO: DSAssignPlatform() system CPU architecture supports rdtscp instruction, TSC integrity monitoring enabled

00:00:00.000.953 INFO: DSOpenPcap() opened pcap input file: ../pcaps/openli-voip-example.pcap

00:00:00.008.396 INFO: DSConfigMediaService() says setpriority() set Niceness to -15 for pkt/media thread 0

00:00:00.008.418 INFO: initializing packet/media thread 0, uFlags = 0x1180101, threadid = 0x7f320f34a700, total num pkt/med threads = 1

00:00:00.058.474 mediaMin INFO: SIP invite found, dst port = 43333, pyld len = 1994, len = 717, rem = 1979, start = 8, index = 0

o=02825591554 0 0 IN IP4 192.168.1.73

c=IN IP4 192.168.1.73

m=audio 5000 RTP/AVP 9 0 8 101

a=rtpmap:9 G722/8000

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:101 telephone-event/8000

a=extmap:1 urn:ietf:params:rtp-hdrext:csrc-audio-level

a=zrtp-hash:1.10 1c812535e276bf518418c4146a20fd56e715704da9c591ae32d58ee6fed6d40f

m=video 5002 RTP/AVP 96 99

a=recvonly

a=rtpmap:96 H264/90000

a=fmtp:96 profile-level-id=4DE01f;packetization-mode=1

a=imageattr:96 send * recv [x=[0-1920],y=[0-1080]]

a=rtpmap:99 H264/90000

a=fmtp:99 profile-level-id=4DE01f

a=imageattr:99 send * recv [x=[0-1920],y=[0-1080]]

a=zrtp-hash:1.10 c1a98e15f12937b9cad2488c6091468f7610efeefa59863c77d827669b913f38

00:00:00.058.644 INFO: DSFindDerStream() found HI interception point ID 10g-dev1, tag = 0x86, len = 8, dest port = 43332, pyld len = 1448, pyld ofs = 52

00:00:00.058.727 mediaMin INFO: Creating dynamic session 1, input #1, SDP specified codec type G711a, auto-detected bitrate 64000, stream group openli-

voip-example. Creation packet info: IP ver 4, ssrc = 0x14a50012, seq num = 32584, payload type 8, pkt len 200, RTP payload size 160, cat 0

00:00:00.058.781 INFO: DSCreateSession() created stream group "openli-voip-example", idx = 0, owner session = 0, status = 1

Dynamic session creation

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 26

Functionality – Codecs
• Multithreaded

– original 3GPP source modifications
• instance create, delete, modify implemented using XDAIS standard

• global data moved into per-instance “state structs”

– API interface
• voplib shared object (.so) library, C/C++ applications include voplib.h

• DSCodecCreate returns a codec handle, usable with DSCodecEncode and DSCodecDecode

• also with various codec-related APIs. Some examples:

– DSGetCodecSampleRate, DSGetCodecBitRate, DSGetCodecRawFrameSize, DSGetCodecCodedFrameSize,

DSGetCodecInfo, DSGetSampleRateValue, DSGetPayloadSize, etc

• Optimization

– compiler optimizations

– pragmas

– XDAIS standard requires all memory allocation done up-front, so no real-time
mallocs or spin-locks

• Testing

– unit / functional testing – mediaTest app, with audio I/O (wav and other audio
format files, USB audio)

– capacity / stress testing – mediaMin app, with application packet push/pull APIs,
pcap files, UDP port I/O)

– system testing – using mediaMin app, highlighted in “Overview” slides

– bit-exactness testing – comparison of floating-point reference vectors

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 27

Functionality – Codec API

• voplib.h
– excerpt shown here

– available on Github page

– C/C++ compatible

/* codec instance definitions and APIs */

HCODEC DSCodecCreate(void* pCodecInfo, unsigned int uFlags); /* if DS_CC_USE_TERMINFO flag is given, pCodecInfo is interpreted as TERMINATION_INFO* (shared_include/session.h), otherwise as
CODEC_PARAMS* (above) */

void DSCodecDelete(HCODEC hCodec);

int DSCodecEncode(HCODEC hCodec,
unsigned int uFlags,
uint8_t* inData,
uint8_t* outData,
uint32_t in_frameSize,
CODEC_OUTARGS* pOutArgs);

int DSCodecDecode(HCODEC hCodec,
unsigned int uFlags,
uint8_t* inData,
uint8_t* outData,
uint32_t in_frameSize, /* in bytes */
CODEC_OUTARGS* pOutArgs);

typedef struct { /* CODEC_ENC_PARAMS */

/* generic items */

int bitRate;
int samplingRate; /* most codecs are based on a fixed sampling rate so this is used only for advanced codecs such as EVS and Opus */
float frameSize; /* amount of data (in msec) processed by the codec per frame, for example 20 msec for AMR or EVS, 22.5 msec for MELPe, etc */

:
:

/* EVS, Opus, other advanced codec items */

int sid_update_interval; /* interval between SID frames when DTX is enabled */
int rf_enable; /* channel-aware mode (for EVS only supported at 13.2 kbps) */
int fec_indicator; /* for EVS, LO = 0, HI = 1 */
int fec_offset; /* for EVS, 2, 3, 5, or 7 in number of frames */
int bandwidth_limit; /* for EVS, typically set to SWB or FB */

:
:

} CODEC_ENC_PARAMS;

typedef struct { /* CODEC_DEC_PARAMS */

/* generic items */

int bitRate; /* bitrate may not be used for codecs that can derive it from payload contents */
int samplingRate; /* not used for most codecs */
float frameSize; /* amount of data (in msec) processed by the codec per frame, for example 20 msec for AMR or EVS, 22.5 msec for MELPe, etc */

:
:

} CODEC_DEC_PARAMS;

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 28

Functionality - Customer-Specific

• Customers often ask us to incorporate / develop specific signal

processing. Some examples:

– “deduplication” due to multiple copies of the same endpoint (with different
latencies)

– removing room echo / reverb

– reducing background noise

• Typically a substantial impact on performance

• Speech recognition (ASR)

– training is ultra sensitive to small changes in
audio characteristics

– production systems are trained with wide
variety of “augmentations”, including
background noise and babble, loud and quiet
speech, frequency warping, etc.

– preprocessing to normalize speech input
decreases reliance on augmentation training
and increases accuracy

– major impact on performance; for real-time applications, concurrent streams may
be reduced 10x

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 29

Capacity

• Performance optimized per box / VM / container

– for specified core type and clock rate, we spec a max number of concurrent
streams per core. For codecs sample rate and bitrate also specified

– extensive use of htop to analyze and verify

– we observe telecom norms – Signalogic has a long history of applications coded
for high capacity, real-time performance

• Codecs

– in addition to core type and clock rate, sample rate and bitrate must also be
specified

– https://www.signalogic.com/evs_codec has a Capacity Figure table for EVS on x86

https://www.signalogic.com/evs_codec

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 30

Capacity, cont.

• Extensive use of htop and to analyze / debug core usage
– hyperthreading must be disabled

– stream groups must not cross core boundaries

– look for memory leaks

htop screen capture showing

packet/media threads

application threads

disabled hyperthread cores

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 31

Capacity, cont.

• Optimized for Linux
– Linux poses performance challenges - not deterministic, not an RTOS

– carriers and LEAs understand “software defined solutions” are not deterministic,
but still expect high capacity / reliability

– software detects and alarms “thread preemption” – possible performance
impairment due to Linux housekeeping and other user applications

• GPUs and DPDK 1 may or may not be helpful

– GPUs
• don’t help with packet processing

• only “matrix expressible” operations can be easily accelerated

• can help with some codecs, but accelerating an entire codec is labor-intensive and requires hand-coding

– DPDK
• useful when combined with high-rate packet I/O hardware

• for PCIe accelerator cards, each x86 core needs a dedicated lane to avoid thread locks

1 Data Plane Development Kit – refers to non-Linux x86 cores dedicated to packet processing

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 32

Reliability and Testing
• Carriers and LEAs obsess about reliability

– very long calls are common. All possible packet and audio data buffers and wrap
conditions that could occur must be tested

– as with capacity, we pay attention to telecom requirements. “5 9s” up time is a
minimum

• Customers run stress tests for weeks at a time

– we run stress tests continuously for 6+ months

– tests include pcaps with artificial wraps, 10x packet push rates, deliberate thread
preemptions, more

– tests run at max capacity ratings

– currently we run tests on Ubuntu 12.04 gcc++ 4.6.4 thru 20.04 gcc++ 9.3.0. Testing can
be provided on CentOS systems as needed

• Extensive use of htop and valgrind
– thorough and painstaking search for memory leaks

• Software is designed for high reliability

– profiling and performance monitoring

– alarms include data flow anomalies, thread preemption

– event and packet logging

– telemetry

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 33

Audio Quality

• Certain customers obsess over audio quality
– we have observed customers using metronomes and whale sounds to verify

timing and frequency integrity when testing endpoints

• “No sound left behind”
– we enhance audio quality by detecting and repairing:

• packet problems (lost packets, out-of-order, gaps, bursts)

• stream timing (overrun, underrun, child streams)

• Debug capability to identify root cause (CSP, cloud, or vendor)
– audio quality is complex and subjective; ability to identify root cause is crucial

Frequency domain analysis

and corresponding Wireshark

packet capture

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 34

Audio Quality Challenges

• Encapsulation artifacts

– encapsulation packet rate may be very different than original audio RTP packet
rate - slow, fast, variable. We’ve seen up to ±15%

– extreme bursts of ooo (out-of-order) packets, 20-50 packets not uncommon

• Streams not time-aligned

– artifacts and child streams distributed unevenly between streams

– media playout servers are particularly bad offenders

Multiple Wireshark

captures showing

stream merging of 3

endpoints

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 35

Audio Quality Verification and Debug

• Test case verification

– analysis and debug tools can pinpoint whether it’s CSP, cloud,or handset issue

– visual audio markers can be enabled to verify timing, frame repair, etc. Different
types of markers are supported

Wireshark screen

capture showing

audio markers

inserted by software

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 36

Media Content Processing

• Content analysis and signal processing

– artifact detection

– background noise reduction

– detecting and avoiding conversation overlap (correcting
time alignment between streams in a stream group)

– stream deduplication

• Content recognition

– speech recognition

– speaker identification

– we use Kaldi open source

– requires tradeoff between capacity and real-time processing

• RTP malware detection

– malware payloads can hide in codec packets

– no way to differentiate “ordinary bad voice” from “deliberate bad voice” without
extensive analysis of fully decoded packets

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 37

Current R&D
• Edge Computing

– ongoing PoCs and LF Edge blueprints demonstrating hybrid cloud, enhanced
privacy / security

– many telecom carriers do not trust security in public clouds

• ASR (Automatic Speech Recognition)

– can be done in real-time, but substantially less capacity

– not yet in real-time: individual speaker identification and transcription, known
as “diarization”

– potential to reduce workloads, accurately alert on “conversations
of interest”

– open source accuracy only a few % WER2 more than proprietary code bases

• Telecom migration to public cloud

– containerized solutions needed

– LI is a particular problem due to encryption requirements

– allow CICD1, for example improving ASR accuracy with “on the fly” training
based on collected data

1 Continuous Integration, Continuous Deployment
2 WER = Word Error Rate

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 38

Edge Computing + Containerization

KubeEdge ASR Offloading

© Signalogic 2020

Rev 1, Aug 2020

Unrecognized / low

confidence speech

 Central DC Processing

 Real-Time

 Larger models, multiple models

 Non Real-Time

 Training

 Augmentation for background noise / babble

 New vocabulary, speakers, language

Updated models

Private Central DC

 Edge Node Processing

Real-Time

 Wideband audio decoding

 Group calls

 -stream alignment

 -conferencing and merging

 ASR inference

Non Real-Time

 Diarization – not possible in real-time yet

Challenges

 Varying latencies between endpoints

 Background noise

 Overlapping conversations

 Avoid using GPUs when possible

Group Call

ASR Text, data

RTP audio

SigSRF Software

Kaldi Run-Time Libs

Telco 5G Network

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 39

ASR Basics

• Deep Learning Architecture
– combines previous generation

xMM1 technology with DNNs
(Deep Neural Networks)

– relies on extensive training and
“augmentation” methods

– Kaldi open source is basis for Alexa,
Google Home, and Cortana

• Frequency domain “images”
– formed by sliding FFT analysis of

incoming time series data. Each
FFT frame output is similar
to cochlea in human ears

– groups of FFT frames form images

– successive images are called
“TDNN” (time delayed DNN),
similar to series of CNNs2

DNN Input Layers (ILn)

Sliding FFT
time domain (time series)

frequency domain

1 Hidden Markov Model, Gaussian Mixed Model, 2 Convolutional Neural Network

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 40

Containers and Kubernetes

• Packet + media + ASR inside container
– minimum 2 x86 cores, 32 GB mem, 1 TB HDD can handle 32 sessions

– a session is wideband decode (e.g. EVS), jitter buffer, stream merging up to 8
stream groups, G711 pcap output, wideband wav file output

– scales up linearly with more cores

• Field apps
– create sessions with REST APIs

– stream UDP/IP packets using gRPC

– offload processing to “edge cloud”

Edge Node

Linux

Master

ControllerREST

API

Server Scheduler

Kubelet

Control Plane APIs

Telco 5G

Network

Networking

Media /

packet

threads Kaldi Libs

SigSRF Libs

RTP audio

ASR text

ETSI Diagram – Vendor Software Mapping

© Signalogic 2019-2020

Rev 1 Jun 2019

9Mar22 Prepared by Signalogic for Akraino Technical Meeting 1Q22 41

LI Perspective

• ETSI LI Terminology: CC mediation (communication content), HI2 and HI3
(Handover Interfaces)

• Packet Handling
– Jitter buffer, packet repair, rate adjustment

• Media
– Decoding (AMR, AMR-WB, EVS, more), stream alignment

• Signal Processing
– Stream merging, conferencing, speech recognition

Warrants

