EVE Overview

A new paradigm to securely manage the industrial edge
Learning Content

› Edge Computing Challenges
› How EVE Modernizes the Industrial Edge
› Commercial Ecosystem Opportunities
› EVE Technology and Security Overview
› Embracing LF Edge Open Source Community Collaboration
Challenges at the Edge

- **Security**
 - No guarantee of network security
 - No guarantee of physical security
 - Onerous security overlays at the edge

- **Diversity of deployed infrastructure**
 - Mixture of remote devices
 - Plethora of apps to orchestrate
 - App integration with several Clouds

- **Scale and automation**
 - Huge # of edge devices, geographically disperse
 - Long maintenance lifecycle (7+ years)

- **Unreliable connectivity**
 - Network outages, latency, expensive bandwidth
 - Might not even control edge network
How EVE Modernizes the Industrial Edge

EVE addresses the unique properties of distributed edge computing nodes deployed outside of the traditional datacenter

Diversity
Inherent diversity of technology and domain expertise required

Scale
Unprecedented scale and geographic distribution of deployed nodes

No Perimeter
No physical or network perimeter dictates a zero trust security model

The distributed edge needs a standard foundation for orchestration and virtualization that is flexible, open and agnostic
Challenges Solved with Edge Virtualization

Edge Virtualization Engine (EVE)
- Abstraction layer designed for the edge
- Created and donated by ZEDEDA to LF
- Open sourced under Apache License v2
- Part of Linux Foundation LF Edge Project
Example ZEDEDA Enterprise Integration

IT/OT Admin & Operations Manager (Full-stack central mgmt)

DevOps & Data Scientists (Develop software and analytics models)

Field Technician (Deploys and services systems)

Azure APIs

EVE APIs

Legacy App eg. SCADA
Edge AI App

Azure IoT Edge Runtime

EVE-OS

intel
AMD
NVIDIA
XILINX
Commercial Ecosystem Opportunities

Project EVE is focused on managing app workloads at the industrial edge

See https://www.lfedge.org/resources/publication-download/
EVE Technology and Security Overview
EVE Architecture

EVE-OS
- EVE services
- containerd

RAM overhead: 500M
CPU overhead: 1 core
Disk overhead: 500M

Partition A
Partition B
EVE managed, workload-centric storage
User Edge Compute Hardware

Hypervisor (KVM [default] or Xen, ACRN)

Guest 1
K3OS

Guest 2
Windows 10
EVE-OS to EVE Controller “Onboarding”

- Cryptographic device identity created when EVE-OS installed (factory)
 - Key pair generated in TPM; private key never leaves TPM
 - Device is imprinted with the controller to trust (a root CA certificate)
- Device can be pre-onboarded in factory, optionally with applications too
- User registers their hardware using device certificate or serial number
- See https://github.com/lf-edge/eve/blob/master/docs/REGISTRATION.md
Remotely Manage Any Edge Node

- Any type of silicon and device
- Automated on-boarding
- Autonomous operations

Node calls “home” for configuration and updates

No field expertise required

Any Silicon

Any User Edge Compute Node
Publicly Documented APIs

EVE-OS
Secure API over TLS

EVE Controller (ZEDCloud or Open EVC)
Secure API over HTTPS

EVE-OS API
https://github.com/lf-edge/eve/tree/master/api

Open EVC Interface (API)
https://github.com/lf-edge/eden/blob/master/docs/data-from-eve.md

ZEDCloud API
https://zedcontrol.zededa.net/api/v1/docs/
EVE API Security Works Through Firewalls, Proxies

In the field (edge locations):
1. TLS to trusted parties (direct to controller and/or via proxy)
2. End-to-end signature over payload (proxy can not view nor modify)
3. Sensitive data encrypted end-to-end (also at rest)

EVE Controller

The Edge Node is configured to trust a particular proxy certificate

EVE Sends data to ZedControl

Proxy Content Inspection / Deep content Inspection
1. Proxy server inspects the data being transferred.
2. Proxy Server cannot inspect the sensitive data as it is encrypted using end-to-end object encryption.
Zero Trust
People, Process, and Technology

- **People**
 - Remove need for device usernames/passwords
 - Role-based access control (RBAC) and multi-tenancy in controller

- **Process**
 - “Zero Touch” hardware deployment to field
 - Design for 7+ year lifetime at the edge
 - Secure, scalable distribution of updates
 - API reports (resource usage, firewall violations) enable analytics in controller

- **Standard security technologies for the user edge**
 - Hardware root of trust (e.g., TPM)
 - Crypto-based identification
 - Measured boot and remote attestation
 - Encryption at rest and in-flight (TLS); keys sealed by TPM
 - Signed images for EVE-OS and applications
 - Use hypervisors for strong isolation and defense in depth
 - Distributed firewall for every app
 - Physical security – port isolation
 - Support deployment of virtual security appliances
App Deployment: Tip of the Iceberg

Edge Virtualization Engine

- EVE-EVC API - config, status, metrics, logs
- Remote instance local consoles
- Volume manager
- EVErouter: DHCP, DNS, ACLs, VPN
- local + NAT
- switch
- cloud
- I/O virtualization and assignment
- EVEmanager: instance orchestrator
- HW info, metrics
- Domain mgr
- dom0
- EVEagent: config, status, metrics
- log manager
- Eth, wlan, wwan
- Eth interface manager
- Network interface manager
- Grub gpt priority boot
- Disk encryption
- Downloader
- Device onboarding
- Crypto device identity
- TEE/TPM

Hardware Layer

- EVE-EVC API - config, status, metrics, logs
- Remote instance local consoles
- Volume manager
- EVErouter: DHCP, DNS, ACLs, VPN
- local + NAT
- switch
- cloud
- I/O virtualization and assignment
- EVEmanager: instance orchestrator
- HW info, metrics
- Domain mgr
- dom0
- EVEagent: config, status, metrics
- log manager
- Eth, wlan, wwan
- Eth interface manager
- Network interface manager
- Grub gpt priority boot
- Disk encryption
- Downloader
- Device onboarding
- Crypto device identity
- TEE/TPM

Support any app on any HW
Manage connectivity
Secure the data & device
Monitor & manage all edge resources and EVE image

Run “apps” at the edge

- EVErouter:
 - DHCP
 - DNS
 - ACLs
- EVEagent:
 - config,
 - status,
 - metrics
- Downloader
- EVEmanager:
 - instance orchestrator
- Verifier
 - sha, sigs
- HW info,
 - metrics
- Domain mgr
- dom0
- I/O virtualization
 - and assignment
- EVErouter:
 - DHCP
 - DNS
 - ACLs
 - VPN
- local + NAT
- switch
- cloud
- I/O virtualization
 - and assignment
- EVEmanager:
 - instance orchestrator
- HW info,
 - metrics
- Domain mgr
- dom0
- EVEagent:
 - config,
 - status,
 - metrics
- log manager
- Eth, wlan, wwan
- Eth interface manager
- Network interface manager
- Grub gpt priority boot
- Disk encryption
- Downloader
- Device onboarding
- Crypto device identity
- TEE/TPM

THE LINUX FOUNDATION
EVE-OS Architecture

Edge Virtualization Engine

- EVEagent: config, status, metrics
- EVEmanager: instance orchestrator
- DNS
- DHCP
- ACEs
- VPN
- Downloader
- Inetface manager
- HW info, metrics
- Domain mgr
- dom0

Remote instance local consoles
Volume manager
EVEmanager: instance orchestrator
I/O virtualization and assignment

Instance A
Instance B
Instance C
Instance D

Hardware Layer
- Eth, RS 485, BTLE etc

TEE/TPM

THE LINUX FOUNDATION
EVE Architecture

Hardware Layer

EVE-EVC API - config, status, metrics, logs

Edge Virtualization Engine

Self update
- Linux watchdog
- Baseos manager
- TEE/TPM

Device connectivity
- Network interface
- Ethernet
- WWAN

Device APIs
- EVEagent: config, status, metrics
- EVEmanager: instance orchestrator
- EVErouter: DHCP, DNS, ACLs, VPN

Device identity onboarding
- Device onboarding
- Crypto device identity
- Driver domain(s)

Secure boot and remote trust
- Measured boot and remote
- Verifier

Edge container runtime
- EVEmanager: instance orchestration
- EVEagent: HW info, Domain info, dom0

Edge container connectivity and storage
- I/O virtualization and assignment
- Volume manager

Deployed edge containers
- Instance A
- Instance B
- Instance C
- Instance D

Instance connectivity
- Remote instance local consoles
- Volume manager

Eth, RS 485, BTLE etc

Open EVC available

Commercial EVC: ZEDEDA
Embracing LF Edge Open Source Collaboration
Community Collaboration Resources

Project page https://www.lfedge.org/projects/eve/
Wiki https://wiki.lfedge.org/display/EVE/EVE
 › Mailing list https://lists.lfedge.org/g/eve
 › Zoom calls (calendar subscription on wiki)
GitHub https://github.com/lf-edge/eve
Slack https://lfedge.slack.com

Roadmap
https://wiki.lfedge.org/display/EVE/Feature+Roadmap
Key Takeaways
EVE Value: Key Takeaways

› Digital transformation at the edge brings unique requirements
 ● Remote cloud-based administration for massive scale
 ■ Device security and full control over app orchestration
 ● Support for disparate embedded hardware (any hardware)
 ● Enablement of both legacy and cloud-native applications
 ● Critical IT need: “lock down and own the bare metal”

› Evolution means handling old (VMs) and new (containers and clusters)
› Networking is harder than you think, especially with security
› Stay ahead of the competition by leveraging and engaging in the power of open source, open community, and open ecosystems
Ready to Transform Your Edge?