As a Stage 1 project in LF Edge, Project Alvarium aims to build a framework and SDK for trust fabrics that deliver data from devices to applications with measurable confidence.

See the vision at: https://youtu.be/88KbYmlkFdw

Project Alvarium at a Glance

- New LF project forming to focus on system-level trust and data confidence
- Differentiated in its comprehensive view and in delivering data to applications with measurable confidence
- Unifying, not reinventing trust insertion technologies
- Relevant to all markets and solution stacks
- Seeded by Dell Technologies code

Project Mission:

- Create the framework and open APIs that bind together existing open source and commercial value-add for trust insertion, develop confidence score algorithms
- Collaborate with other LF projects and industry efforts (OSS, SDO) to unify existing and emerging trust insertion technologies and refine scoring algorithms

What is a Data Confidence Fabric (DCF), or “trust fabric”?

- A Data Confidence Fabric (DCF), or more generally-speaking trust fabric, is a virtual overlay that aids in the delivery of data from devices to applications with measurable trust characteristics.
- A DCF is a loosely-coupled collection of various trust insertion technologies, bound together with an open framework.
  - Example technologies include tools for silicon-based Root of Trust (RoT), open authentication and data ingestion APIs, metadata handling, immutable storage and blockchain/ledger.
- The Alvarium framework features open APIs and integrated algorithms to generate confidence scores for data based on the trust insertion technologies used and overall context.
- There is no single DCF, rather each entity/organization can build their own fabric with preferred technologies using the Alvarium framework.
  - A trust fabric built with widely trusted ingredients will naturally produce the highest data confidence scores.
  - Confidence scores normalize across systems as data flows through intersecting trust fabrics.
- Key differentiation from other efforts focused on security, privacy and trust:
  - Holistic, system-level focus
  - Confidence scores to enable organizations to act with measured risk based on policy appropriate for the use case / context, working across heterogenous systems of systems.

Why we need to collaborate on a global trust fabric:

- Pervasive sharing and monetization of data, resources and services across heterogenous systems of systems spanning public and private boundaries.
  - Can also include trusted sharing/exchange of data sets for training AI models.
  - The common “zero trust” model isn’t scalable, access policy needs to be attached to trustworthy data.
- Consolidating workloads on common infrastructure in a trusted fashion.
  - Enable sharing of data/services based on policy while protecting privacy and IP.
  - Address common debates on data ownership.
- Meeting compliance requirements (e.g. GDPR) at scale.
  - Enables organizations to trigger deletion of distributed data in place when a user requests to revoke their privacy consent.

Example end-to-end trust insertion points

Example OSS trust insertion technologies
Initial DCF prototype

• Dell Technologies’ initial Data Confidence Fabric (DCF) prototype (completed in August 2019) demonstrated a trust fabric comprised of a mix of open source and commercial technologies.
• Prototype was deployed entirely on one edge system to locate policy insertion for data monetization/compliance as close as possible to the data source.
• Alvarium framework unifies the various loosely-coupled trust insertion elements.
• Solution could just as well be deployed in a distributed fashion.
• Next steps in prototyping – demonstrating technology swapability, for example exchanging Project Concord ledger for Hyperledger or IOTA.
• Dell will contribute the Alvarium framework code to seed the project.

Example Confidence Scoring

• Scoring creates a weighted confidence depending on trust insertion technologies implemented in a given trust fabric.
• Dell’s initial DCF prototype leveraged a simple linear scale for simplicity.
• Scoring algorithms will require industry collaboration to develop.
• Initially via OSS but may require some standards work.
• Likely to make sense for weighted scoring, some factors that zero out confidence.