
Debugging APIs
We currently have the device send log information to the controller using the log API, and this can be useful  when debugging issues in EVE.

However, in some cases it is useful to also be able to inspect the current state. That state could be the state maintained by the EVE microservices (e.g., 
the AppInstanceStatus maintained by zedmanager), or it could be external state such as the iptables or ps process output.

This proposal specifies how a well-defined set of such information can be retrieved by the controller.

Background and motivation

We currently deliver the logs from the EVE microservices to the controller, plus specific information relating to the device and instance status and metrics. 
However, two issues makes it harder to use those logs than those on the device, the first being that they are consolidated from all the agents, and the 
second being that the logs are for the lifetime of the device (split in IMGA and IMGB logs) and in most cases one cares about what happened after the last 
reboot.

In addition, the current state of the device is easier to determine by examining /var/run on the device, and looking at things like the output of ps or xl list.

Finally, there are implementation internal aspects (such as iptables -L, ip rule show, ip route show) which are useful when debugging issues.

Proposal

We already have the logging API as a flexible and scaleable way to deliver information from the device to the controller, with the appropriate retry
/retransmission logic in EVE. Its only constraint is that a single log item must be smaller than the maximum size configured in the web server running on 
the controller.

We also have a flexible way to extend the configuration using the ConfigItem message in the configuration; a string key plus a string value, which is used 
for timer and policy settings.

Last but not least we have a way to send commands such as the RebootCmd using eventual consistency by having a counter to ensure that a command is 
executed at least once.

Combining those we can add support for additional debug commands by defining a ConfigItem key string for each, where the value is a number. When the 
device receives such a ConfigItem it checks if the number is different than what it last processed for that particular key, and if it is the device performs the 
operation and the output is sent to the log API.

Initial set of keys/commands

Command Reported information Potential use

ps ps output Look for hung processes

du du -a /persist Track down disk usage

du.<subdir> du -a /persist.<subdir> E.g., du.log, du.IMGA

state All of /var/run content Snapshot for all agents and object

state.<agent> /var/run/<agent> Snapshot for one agent

state.<agent>.<type> /var/run/<agent>/<type> For agent and type

state.obj.<key> /var/run/*/*/<key> E.g., look for an instance UUID

config /config except any *.key.pem Looking for stale files

persist.<subdir> ls /persist/<subdir> Looking for stale files or missing certs

lspci Alpine lspci output Check if pci controllers match model

lsusb Alpine lsusb output Check if any USB devices connected

iptables Iptables -t filter; iptables -t raw; iptables -t nat, all with -L -nv Check if iptables are wrong + counters

route ip route show

route.X ip route show table X

rule ip rule show

Considerations for adding future commands



For security reasons any command should be of a fixed function; no command should ever allow arbitrary execution of e.g., shell commands. Furthermore, 
when defining new commands one needs to take care to not expose any secret information from the device, such as the content of running edge container 
objects, or credentials for datastore access. 

Currently none of the defined commands alter the state of the device, and if there is a desire to alter the state (e.g., purge certain directories to recover 
from low on disk space) it would make sense to explore alternative approaches than this basic fire-and-forget approach.

Implementation notes

The device will retain counter Y value for command string X, in similar ways as it retains a rebootCount and uuidtonum persistently across reboots.

This could be in /persist/status/zedagent/KeyToNum/X.json

When zedagent receives config items from the controller it will compare the counter Y with what is recorded, and if it is different than it will send the 
requested output to the log API. It makes sense for the log output to include the command string and counter value.


	Debugging APIs

