
Secure Device Onboard (FIDO Device Onboard)

Status

Current :Project Stage Stage 1 - At Large
Website: https://www.lfedge.org/projects/securedeviceonboard/
Wiki: FIDO Device Onboard
TAC Sponsors: Joe Pearson (IBM), (Intel)Jim St. Leger
Project Overview: ; (May 6)PowerPoint TAC Presentation

Presented during the Wednesday, May 6, 2020 call: Meeting Recording (TAC https://zoom.us/rec/share
)/69MlNur70HhOaZWK6k3BAbEoA73oT6a8hCAc_vJYxEsi4LRQjA7QRWt_fjnd5Q0E

TAC two-thirds vote approval reached on June 3, 2020.
Governing Board Strategic Planning Committee approval reached on June 4, 2020.

Project Proposal - Project Introduction:

Required Information Responses (Please list N/A if not applicable)

Name of Project Secure Device Onboard

Project Description (what it does, why it
is valuable, origin and history)

What does Secure Device Onboard do?

Secure Device Onboard (SDO) is an automated “Zero-Touch” onboarding service. To more securely
and automatically onboard and provision a device on edge hardware, it only needs to be drop shipped
to the point of installation, connected to the network and powered up. SDO does the rest. This zero-
touch model simplifies the installer’s role, reduces costs and eliminates poor security practices, such as
shipping default passwords.

Why it is valuable?

Easier, faster, less expensive, and more secure onboarding of devices.

Expands TAM for IOT devices, accelerates resulting ecosystem of data processing infrastructure.

Most “Zero touch” automated onboarding solutions require the target platform to be decided at
manufacturer.

· Forces Custom Build-to-Order Model- ODMs must manufacture unique device SKUs for each
customer/cloud combination.

SDO “Late Binding”- allows the device’s target platform to be selected “late” in the supply chain, at first
power-on.

· Enables Build-to-Plan Model - ODMs can build identical IOT devices in high volume using a
standardized manufacturing process. Reduces inventories, supply cycle times, and costs.

· Open – service & cloud independent. Devices are bound to target ecosystem at install. Works
with existing cloud services, it does not replace them.

Origin and History

Secure Device Onboard was released as open source software by Intel Corporation in February 2020,
based on Intel® SDO Version 1.7.

The original Intel® SDO launched in September 2017 as a stand-alone Intel product reflecting the
original SDO protocol and architecture specifications. With the complex ecosystem needed for success
of this product, we decided to open source and donate the core functions of Intel® SDO to the
community in order to drive an industry standard, resolve key industry friction points, and allow the IOT
market to grow faster. We believe that open sourcing with a vibrant ecosystem will allow SDO to evolve
into a true industry standard.

Statement on alignment with Foundation
Mission Statement

One of the primary objectives of Secure Device Onboard is to expand TAM for IOT devices. To
achieve this goal, a cross-industry collaboration of device manufacturers; distributors; systems
integrators; cloud service providers and device management software vendors is required to accelerate
adoption. The Linux Foundation is the ideal organization to facilitate this collaboration and accelerate
adoption of this important technology.

https://wiki.lfedge.org/display/LE/Project+Stages%3A+Definitions+and+Expectations
https://www.lfedge.org/projects/securedeviceonboard/
https://wiki.lfedge.org/display/SDO/FIDO+Device+Onboard
https://wiki.lfedge.org/display/~joe-pearson
https://wiki.lfedge.org/display/~JimStLeger
https://wiki.lfedge.org/download/attachments/22827198/LFEdge%20SDO%20Overview%20March%202020%20v2.pptx?version=1&modificationDate=1583510633837&api=v2
https://drive.google.com/open?id=1hX88hxcM62alb9bb_ncij4TYpJSLpBCt
https://wiki.lfedge.org/pages/viewpage.action?pageId=1671298
https://zoom.us/rec/share/69MlNur70HhOaZWK6k3BAbEoA73oT6a8hCAc_vJYxEsi4LRQjA7QRWt_fjnd5Q0E
https://zoom.us/rec/share/69MlNur70HhOaZWK6k3BAbEoA73oT6a8hCAc_vJYxEsi4LRQjA7QRWt_fjnd5Q0E

High level assessment of project
synergy with existing projects under LF
Edge, including how the project
compliments/overlaps with existing
projects, and potential ways to
harmonize over time. Responses may
be included both here and/or in
accompanying documentation.

We believe that Secure Device Onboard will accelerate adoption of devices into Home and Industrial
ecosystems, helping drive the need for all of the current projects in the LFEdge community.

Integration with FLEDGE enabled devices could simplify the production process and installation of
newly manufactured devices.

Link to Code of Conductcurrent https://lfprojects.org/policies/code-of-conduct/

Sponsors from TAC, if identified (a
sponsor helps mentor projects)

Intel, Jim St. Leger

IBM, Joe Pearson

Project license Apache License 2.0

Source control (GitHub by default) https://github.com/secure-device-onboard

Issue tracker (GitHub by default) https://github.com/secure-device-onboard

External dependencies (including
licenses)

mbedTLS Apache License 2.0

Apache Commons Collections Apache License 2.0

Apache Commons IO Apache License 2.0

Apache Commons Pool Apache License 2.0

Apache HttpComponents HttpClient Apache License 2.0

Apache ServiceMix :: Bundles :: spring-aspects Apache License 2.0

Apache Tomcat Apache License 2.0

Bouncy Castle PKIX, CMS, EAC, TSP, PKCS, OCSP,
CMP, and CRMF APIs

MIT License

BouncyCastle MIT License

CryptoAuthLib Microchip Proprietary License

epid-sdk Apache 2.0

FasterXML jackson-core Apache License 2.0

guava-libraries Apache License 2.0

H2 Database Engine Apache License 2.0

Hamcrest BSD 3-clause "New" or "Revised" License

Jackson-annotations Apache License 2.0

jackson-core Apache License 2.0

jackson-databind Apache License 2.0

Jackson-modules-java8 Apache License 2.0

javax.annotation API Sun GPL With Classpath Exception v2.0

jaxb-v2 GNU General Public License v2.0 w
/Classpath exception

jedis MIT License

JUnit Eclipse Public License 1.0

junit 5 Common Public License 1.0

jwtk/jjwt Apache License 2.0

Legion of the Bouncy Castle MIT License

Log4J API Apache License 2.0

Log4J Core Apache License 2.0

Log4j Implemented Over SLF4J Apache License 2.0

https://lfprojects.org/policies/code-of-conduct/
https://wiki.lfedge.org/display/~JimStLeger
https://wiki.lfedge.org/display/~joe-pearson
https://github.com/secure-device-onboard
https://github.com/secure-device-onboard

Logstash - logstash-logback-encoder Apache License 2.0

MariaDB Client Library for Java Applications GNU Lesser General Public License v2.1
or later

Mockito MIT License

MS SQL Server JDBC Driver MIT

Objenesis Apache License 2.0

OpenJDK GNU General Public License v2.0 w
/Classpath exception

OpenJRE 8 GPL-2.0-with-classpath-exception

openssl OpenSSL Combined License

OpenSSL OpenSSL Combined License

PowerMock Apache License 2.0

Project Lombok MIT License

reactor reactor-core Apache 2.0

Safestring MIT License

SLF4J MIT License

Spring-Boot Apache License 2.0

spring-framework Apache License 2.0

System Rules Common Public License 1.0

TestNG Apache License 2.0

tpm2-abrmd BSD-2

tpm2-tss BSD-2

Release methodology and mechanics Secure Device Onboard currently follows a release cadence of approximately 12 weeks, typically with 9
weeks allocated for development, two weeks for integration test, and one week for final validation.
Defects identified in the two-week integration test phase are resolved and the code base updated to
create a release candidate for the final week of validation. Release artifacts are generated by a fully
automated CI system. Integration test and validation includes both automated and manual testing and
provides end-to-end testing of the SDO component running in concert to execute all phases of the SDO
protocol and service lifecycle across multiple platforms.

Names of initial committers, if different
from those submitting proposal

N/A

Current number of code contributors to
proposed project

20

Current number of organizations
contributing to proposed project

Intel Corporation

Briefly describe the project's leadership
team and decision-making process

We recognize that in order to be a viable open source project, a neutral diverse technical governance is
critical. We will be actively seeking TSC leaders from companies who are committed to SDO
success. Our initial proposal is that Intel will contribute 3 of 7 TSC seats and by the end of Q2’20 we
will hold elections for the other 4 seats.

Currently the leadership of the project is as follows:

Rich Rodgers (Intel) is the “product owner” and is responsible for identifying the feature roadmap for the
secure device onboard project. He collaborates with members of the Secure Device Onboard
ecosystem to identify emerging requirements and features. We anticipate that this process will expand
to include others in a Secure Device Onboard technical steering committee comprised of community
contributors and ecosystem stakeholders.

Tom Barnes (Intel) is the project manager for Secure Device Onboard where he is responsible for
planning and processes. He has previously contributed to the LF Hyperledger Sawtooth, Avalon, and
Private Data Objects projects. We anticipate that Tom will be an initial maintainer for the Secure
Device Onboard project.

Saurabh Dadu (Intel) is the chief architect for Secure Device Onboard. He is responsible for translating
the feature roadmap into technical requirements and architectural specifications, for maintenance of the
Secure Device Onboard protocol specification, and for the overall security architecture of Secure
Device Onboard. We anticipate that he will continue in this role as part of the Secure Device Onboard
Technical Steering Committee.

John Easterday (Intel) and Tushar Ranjan Behera (Intel) are the technical leads for the Secure Device
Onboard project. They are responsible for software development as well as for oversite of devops and
validation activities. We anticipate that they will be initial maintainers for the Secure Device Onboard
project, with responsibility for ensuring contributions are properly and promptly reviewed and approved,
and that they will eventually be joined by other contributors as the community of contributors grows.

Richard Kerslake: Secure Device Onboard – Director. (Intel)

Hussein Alayan: Secure Device Onboard – Program Manager/Deputy Product owner (Intel)

SDO is a complex project comprising five sub-components spanning embedded devices to cloud
services. As the community of contributors grows, we anticipate that the governance model will evolve
into a core team/sub-team model similar to the one used by the Rust project as described here: https://gi

.thub.com/rust-lang/rfcs/blob/master/text/1068-rust-governance.md

Preferred maturity level (see stages)here Secure Device Onboard is applying for Stage 1: At Large Projects

For Projects applying at the Growth
(Phase 2) or Impact Stage (Phase 3),
please outline how your project
successfully meets/exceeds the
requirements as defined under each
category. Responses may be included
both here and/or in accompanying
documentation.

N/A

List of project's official communication
channels (slack, irc, mailing lists)

As a recently opening open source project, we plan to work with LFEdge in setting up communication
and net presence (slack, website, social media, etc...)

Link to project's website As a recently opening open source project, we plan to work with LFEdge in setting up communication
and net presence (slack, website, social media, etc...)

Links to social media accounts As a recently opening open source project, we plan to work with LFEdge in setting up communication
and net presence (slack, website, social media, etc...)

Existing financial sponsorship Intel Corporation

Infrastructure needs or requests · Secure Device Onboard is moving its continuous integration (CI) infrastructure to Jenkins running
on Amazon Web Services. If LF Edge has an alternative solution, we would be interested in learning
more about its capabilities and associated costs.

· The Secure Device Onboard plans to maintain both its source and documentation repositories on
GitHub, and to publish binaries using GitHub.

· The Secure Device Onboard project plans to move its documentation to GitHub Pages. IF LF
Edge has an alternative solution, we would be interested in learning more about its capabilities and
associated costs.

· The Secure Device Onboard project would benefit from access to a Jira instance (or equivalent)
managed by LF Edge.

· The Secure Device Onboard project would benefit from access to a Slack channel (or equivalent)
managed by LF Edge.

Currently Supported Architecture x86, x86-64, ARM

https://github.com/rust-lang/rfcs/blob/master/text/1068-rust-governance.md
https://github.com/rust-lang/rfcs/blob/master/text/1068-rust-governance.md
http://wiki.lfedge.org/display/LE/Project+Stages%3A+Definitions+and+Expectations

Planned Architecture Support N/A

Project logo in svg format

(see https://github.com/lf-edge/lfedge-
 for guidelines)landscape#logos

As a recently opening open source project, we plan to work with LFEdge in setting up communication
and net presence (slack, website, social media, etc...)

Trademark status N/A

Does the project have a Core
Infrastructure Initiative security best
practices badge? (See: https://bestpracti

)ces.coreinfrastructure.org

No - however, the team is familiar with the Core Infrastructure security badge process and will consider
pursuing that badge in the future.

Any additional information the TAC and
Board should take into consideration
when reviewing your proposal?

No

Stage 1: At Large Projects (formerly 'Sandbox')

Criteria Data

2 TAC sponsors to champion the project & provide mentorship as needed TBD

A presentation at an upcoming meeting of the TAC, in accordance with the project proposal requirements March 25, 2020

Adherence to the Foundation IP Policy Yes

Upon acceptance, At Large projects must list their status prominently on website/readme Yes

Project Proposal - Taxonomy Data:

Functions (Provide, Consume, Facilitate, or N/A; Add context as needed)

Functions (Provide, Consume, Facilitate, or N/A; Add context as needed)

APIs Provides

Cloud Connectivity Consumes

Container Runtime & Orchestration Consumes

Data Governance Provide and Facilitate

Data Models N/A

Device Connectivity Consumes – HTTP, HTTPs, with architectural support for other connectivity protocols not yet implemented

Filters/Pre-processing N/A

Logging Provides

Management UI Provides (some use cases)

Messaging & Events Provides

Notifications & Alerts Provides

Security Provides

Storage N/A

Deployment & Industry Verticals (Support, Possible, N/A; Add context as needed)

https://github.com/lf-edge/lfedge-landscape#logos
https://github.com/lf-edge/lfedge-landscape#logos
https://bestpractices.coreinfrastructure.org/
https://bestpractices.coreinfrastructure.org/

Deployment Type (Support, Possible, N/A; Add context as needed)

Customer Devices (Edge Nodes) Support

Customer Premises (DC and Edge Gateways) Support

Telco Network Edge (MEC and Far-MEC) Possible

Telco CO & Regional Possible

Cloud Edge & CDNs Support

Public Cloud Support

Private Cloud Support

Deployment & Industry Verticals (or X; Add context as needed)

Directly applicable Industry/Verticals use cases (or X; Add context as needed)

Automotive / Connected Car

Chemicals X

Facilities / Building automation

Consumer X

Manufacturing

Metal & Mining

Oil & Gas

Pharma X

Health Care X

Power & Utilities

Pulp & Paper X

Telco Operators

Telco/Communications Service Provider (Network Equipment Provider)

Transportation (asset tracking)

Supply Chain

Preventative Maintenance

Water Utilities X

Security / Surveillance

Retail / Commerce (physical point of sale with customers) X

Other - Please add if not listed above (please notify when you add one)TAC-subgroup@lists.lfedge.org

Deployments (static v dynamic, connectivity, physical placement) - (or X; Add context as needed)

Use Cases (or X; Add context as
needed)

Gateways (to Cloud, to other placements)

NFV Infrastructure X

Stationary during their entire usable life / Fixed placement edge constellations / Assume you always have connectivity
and you don't need to store & forward.

Stationary during active periods, but nomadic between activations (e.g., fixed access) / Not always assumed to have
connectivity. Don't expect to store & forward.

X

mailto:TAC-subgroup@lists.lfedge.org

Mobile within a constrained and well-defined space (e.g., in a factory) / Expect to have intermittent connectivity and store
& forward.

Fully mobile (To include: Wearables and Connected Vehicles) / Bursts of connectivity and always store & forward.

Compute Stack Layers and Cloud Stack Layers (architecture classification) - (Provide, Require, or N/A; Add context as needed)

Compute Stack Layers (Provide, Require, or N/A; Add context as needed)

APIs Provide

Applications Provide

Firmware Require

Hardware Require

Orchestration N/A

OS Require

VM/Containers Require, vm is optional

Cloud Stack Layers Does Proposed Project Currently Include (Yes, No or Planned/Roadmap)

Applications Yes

Configuration (drive) Yes

Content (management system) Yes

IaaS No

PaaS No

Physical Infrastructure No

SaaS No

	Secure Device Onboard (FIDO Device Onboard)

