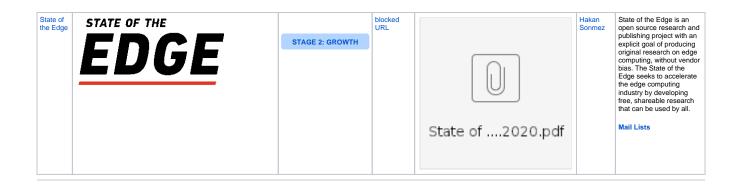
LF Edge

🧭 Welcome to the LF Edge wiki, where you will find information with a cross project focus. For individual projects, follow the links below.

LF Edge is an umbrella organization that aims to establish an open, interoperable framework for edge computing independent of hardware, silicon, cloud, or operating system. By bringing together industry leaders, LF Edge will create a common framework for hardware and software standards and best practices critical to sustaining current and future generations of IoT and edge devices.

We are fostering collaboration and innovation across the multiple industries including industrial manufacturing, cities and government, energy, transportation, retail, home and building automation, automotive, logistics and health care — all of which stand to be transformed by edge computing.


Questions? Please visit the FAQ.

Projects

Title	Project	Status	CII Badge	Technical Charter	TSC Chair	Description
Akraino	AKRAINO	STAGE 3: IMPACT	blocked URL	Akraino T 2020.pdf	Chair: Yin Ding Co-Chair: Fukano Haruhisa	Aims to create an open source software stack that supports high-availability cloud services optimized for edge computing systems and applications. Mail Lists

Alvarium	PROJECT	STAGE 1: AT LARGE	blocked URL	Alvariumdocx.pdf	Trevor Conn	Project Alvarium, with initial code seeded by Dell Technologies, is aimed at building a framework and SDK for trust fabrics that deliver data from devices to applications with measurable confidence. Trust fabrics take a system-level approach by layering trust insertion technologies spanning silicon to cloud and will usher in an entire new era of business models and custome rexperiences driven by interconnected ecosystems. Initial contributing companies include Dell, the IOTA Foundation, Intel, Arm, VMware and ZEDEDA.
Baetyl	FBAETYL	STAGE 1: AT LARGE	blocked URL	LF Edge Tl (1).pdf	Mengmen g Zhang	Baetyl (pronounced "Beetle") offers a general- purpose platform for edge computing that manipulates different types of hardware facilities and device capabilities into a standardized container runtime environment and API, enabling efficient management of application, service, and data flow through a remote console both on cloud and on prem. Baetyl also equips the edge operating system with the appropriate toolchain support, reduces the difficulty of developing edge calculations with a set of built-in services and APIs, and provides a graphical IDE in the future. Mail Lists
EdgeX Foundry	E D G E 💥 F O U N D R Y [°]	STAGE 3: IMPACT	blocked URL	EdgeX Fodocx.pdf	James Butcher	EdgeX, your data liberated Highly flexible open source software framework that facilitates interoperability between heterogeneous devices and applications at the IoT Edge, along with a consistent foundation for security and manageability regardless of use case. The open, vendor-neutral platform speeds developer and technology providers time to market by providing modular reference services for device-data ingestion, normalization, analysis and sharing in support of new IoT data services and advanced edge computing applications.
eKuiper	=- eKuiper	STAGE 1: AT LARGE	blocked URL	eKuiper T (1).pdf	JiYong Huang	Mail Lists eKuiper is an edge lightweight IoT data analytics/streaming software implemented by Golang, and it can be run at all kinds of resource- constrained edge devices. One goal of eKuiper is to migrate the cloud streaming software frameworks (such as Apac he SparkApache Storm and Apache Flink) to the edge side. eKuiper helps to bring computation closer to where data is generating, with an introduced rule engine to enable streaming applications on the edge side. Mail Lists

EVE		STAGE 2: GROWTH	blocked URL	Enterprisarter.pdf	Erik Nordmark	An open abstraction engine that simplifies the development, orchestration and security of cloud-native applications on distributed edge hardware. Supporting containers, VMs and unikernels, EVE provides a flexible foundation for Industrial and Enterprise IoT edge deployments with choice of hardware, applications and clouds. Mail Lists
Fledge	À FLEDGE	STAGE 3: IMPACT	blocked URL	Technical9 (2).pdf	Robert Raesema nn	Fledge is an open source framework and community for the <u>Industri</u> <u>al Edge</u> . Architected for rapid integration of any lloT device, sensor or machine all using a common set of application, management and security REST APIs with existing industrial "brown field" systems and clouds. Fledge edge services include: Collect Data from any/all sensors, aggregate /combine/organize data. edge based alerting /anomaly detection /machine learning (TensorflowLlte, OpenVino), transform /filter data in flight, buffer data, analyze/visualize edge dates and deliver data to multiple local /cloud destinations. Mail Lists
Home Edge	HOME EDGE	STAGE 2: GROWTH	blocked URL	Home Edgrter.pdf		Interoperable, flexible, and scalable edge computing services platform with a set of APIs that can also run with libraries and runtimes. Mail Lists
Open Horizon	OPEN HORIZON	STAGE 2: GROWTH	blocked URL	Open Hori0 (1).pdf	Joe Pearson	Open Horizon is a platform for managing the service software lifecycle of containerized workloads and related machine learning assets. It enables management of applications deployed to distributed webscale fleets of edge computing nodes and devices without requiring on- premise administrators. Mail Lists
FIDO Device Onboard	FIDD DEVICE ONBOARD	STAGE 2: GROWTH	blocked URL	SDO LF Ed18 v1.pdf	Randy Templeton	The mission of the FIDO Device Onboard project is to develop open source software to support an automated "Zero-Touch" onboarding service in order to more securely and automatically onboard and provision a device on edge hardware. This zero-touch model simplifies the installer's role, reduces costs and eliminates poor security practices, such as shipping default passwords. Mail Lists

Mailing Lists

 \oslash

A full directory of LF Edge Mailing Lists can be found at https://lists.lfedge.org/g/main

Help Us Improve the Wiki

This Wiki is owned by the LF Edge Community. Contributions are always welcomed to help make it better!

In upper right, select Log In. You will need a Linux Foundation Account (can be created at http://myprofile.linuxfoundation.org/) to log-in. For a Wiki tutorial, please see Confluence Overview. Thank you!

Recent space activity

Kendall Perez

Technical Advisory Council (TAC) updated yesterday at 3:22 PM view change

Akraino - Stage 3 - 2024-04-03 updated Apr 18, 2024 view change

Mar Hernández OpenIDX (Open Instant Data eXchange) updated Apr 17, 2024 view change

Guido Gehlen OpenIDX (Open Instant Data eXchange) updated Apr 17, 2024 view change

Helen Chan Nexoedge Task Tracking Checklist updated Apr 09, 2024 view change

Space contributors

- Kendall Perez (19 hours ago)
- Yin Ding (4 days ago)
- Mar Hernández (5 days ago)
- Guido Gehlen (6 days ago)
- Helen Chan (14 days ago)
- ...