Edgex Rule Engine Tutorial

Overview

In EdgeX Geneva, eKuiper - an SQL based rule engine is integrated with EdgeX. Before diving into this tutorial, let's spend a little time on learning basic
knowledge of eKuiper. eKuiper is an edge lightweight 10T data analytics / streaming software implemented by Golang, and it can be run at all kinds of
resource constrained edge devices. eKuiper rules are based on Sour ce, SQL and Si nk.

® Source: The data source of streaming data, such as data from MQTT broker. In EdgeX scenario, the data source is EdgeX message bus, which
could be ZeroMQ or MQTT broker.

® SQL: SQL is where you specify the business logic of streaming data processing. eKuiper provides SQL-like statements to allow you to extract,
filter & transform data.

® Sink: Sink is used for sending analysis result to a specified target. For example, send analysis result to another MQTT broker, or an HTTP rest
address.

blocked URL
Following three steps are required for using eKuiper.

® Create a stream, where you specify the data source.
® Write a rule.

© Write a SQL for data analysis

o Specify a sink target for saving analysis result
® Deploy and run rule.

The tutorial demonstrates how to use eKuiper to process the data from EdgeX message bus.

eKuiper EdgeX integration

EdgeX uses message bus to exchange information between different micro services. It contains the abstract message bus interface and implementations
for ZeroMQ & MQTT. The integration work for eKuiper & EdgeX includes following 3 parts.

® An EdgeX message bus source is extended to support consuming data from EdgeX message bus.

® To analyze the data, eKuiper need to know data types that passed through it. Generally, user would be better to specify data schema for analysis
data when a stream is created. Such as in below, a denp stream has a field named t enper at ur e field. It is very similar to create table schema
in relational database system. After creating the stream definition, eKuiper can perform type checking during compilation or runtime, and invalid
SQLs or data will be reported to user.

CREATE STREAM denp (tenperature bigint) WTH (FORMAT="JSON'...)
However, data type definitions are already specified through EdgeX Cor e contract Service, and to improve the using experience, user are
NOT necessary to specify data types when creating stream. eKuiper source tries to load all of val ue descri ptors from Core contract
Ser vi ce during initialization of a rule (so now if you have any updated value descriptors, you will have to restart the rule), then if with any data
sending from message bus, it will be converted into corresponding data types.

® An EdgeX message bus sink is extended to support send analysis result back to EdgeX Message Bus. User can also choose to send analysis
result to RestAPI, eKuiper already supported it.

blocked URL

Start to use

In out tutorial, we will use Random Integer Device Service which is shipped in official EdgeX release, and run rules against the data generated by this
sample device service.

Run EdgeX Docker instances

Go to EdgeX develop-scripts project, and download related Docker compose file for Geneva release, then bring up EdgeX Docker instances.

$ docker-conpose -f ./docker-conpose-nexus-redis-no-secty.yml up -d --build

After all of the Docker instances are started, you can use docker ps command to verify all of services are running correctly.

https://github.com/lf-edge/ekuiper
https://github.com/lf-edge/ekuiper/raw/master/docs/en_US/arch.png
https://github.com/edgexfoundry/go-mod-messaging
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/rules/sources/edgex.md
https://github.com/lf-edge/ekuiper/raw/master/docs/en_US/edgex/arch_light.png
https://github.com/edgexfoundry/device-random
https://github.com/edgexfoundry/developer-scripts/tree/master/releases

$ docker ps
CONTAI NER | D
COMVAND

PORTS
5618c93027a9
37 minutes ago
/tcp

f abe6b9052f 5
37 minutes ago
/tcp
950135a7041d
37 minutes ago
/tcp

c49b0d6f 9347
37 minutes ago
/tcp
4265dcc2bb48
37 minutes ago
/tcp
4667160e2f 41
37 minutes ago
/tcp

9bbf €95993f 5
37 minutes ago
/tcp
2e342a3aae8l
37 minutes ago
/tcp
3cfc628e013a
37 minutes ago
/tcp

f 69e9c4d6cc8
37 mnutes ago
/tcp
9e5091928409
37 minutes ago
/tcp

74e8668f 892c
37 minutes ago
/tcp
9b341bb217f 9
37 minutes ago

0. 0. 0. 0: 8500- >8500/t cp
nexus3. edgexfoundry

ed7ad5ae08b2
37 minutes ago
m nut es
edgex-files

Run with native

I MVAGE
CREATED

nexus3. edgexf oundry

Up 37 mnutes

nexus3. edgexf oundry

Up 37 mnutes

emgx/ kui per:0.3.1
Up 37 minutes

nexus3. edgexf oundry

Up 37 minutes

nexus3. edgexf oundry

Up 37 minutes

nexus3. edgexfoundry

Up 37 minutes

nexus3. edgexfoundry

Up 37 minutes

nexus3. edgexf oundry

Up 37 mnutes

nexus3. edgexf oundry

Up 37 mnutes

nexus3. edgexf oundry

Up 37 minutes

nexus3. edgexf oundry

Up 37 minutes

redis:5.0.7-al pi ne
Up 37 minutes

consul :1.3.1
Up 37 minutes

Up 37

STATUS
NAVES
or g: 10004/ docker - devi ce-vi rtual - go: mast er "/ device-virtual --p..
0. 0. 0. 0: 49990- >49990
edgex- devi ce-vi rtual
or g: 10004/ docker - edgex- ui - go: nast er "./edgex-ui-server"
0. 0. 0. 0: 4000- >4000
edgex- ui - go
"/ usr/ bi n/ docker-ent ..
0. 0. 0. 0: 20498- >20498/ t cp, 9081/tcp, 0.0.0.0:48075->48075
edgex- kui per
or g: 10004/ docker - suppor t - schedul er - go: mast er
0. 0. 0. 0: 48085->48085

"/ support - schedul er

edgex- support - schedul er
or g: 10004/ docker - cor e- conmmand- go: nast er "/ core-command -cp=c..!
0.0.0.0:48082->48082
edgex- cor e- conmand
org: 10004/ docker - app- servi ce-confi gur abl e: mast er "/ app- service-config..
48095/tcp, 0.0.0.0:48100->48100
edgex- app- servi ce-confi gurabl e-rul es
or g: 10004/ docker - cor e- net adat a- go: nmast er "/ core-netadata -cp=..
0. 0. 0. 0: 48081->48081/tcp, 48082
edgex- cor e- et adat a
org: 10004/ docker - support-notificati ons-go: naster
0. 0. 0. 0: 48060- >48060

"/ support-notificati..

edgex- support-notifications
org: 10004/ docker - sys- ngnt - agent - go: nast er "/ sys-ngnt - agent -cp..
0. 0. 0. 0: 48090- >48090
edgex- sys- ngnt - agent
"/ core-data -cp=cons..

or g: 10004/ docker - cor e- dat a- go: nast er

0. 0. 0. 0: 5563- >5563/tcp, 0.0.0.0: 48080->48080
edgex- core-dat a

or g: 10004/ docker - suppor t - | oggi ng- go: nmast er

0.0.0.0:48061->48061

"/ support-1ogging -c..

edgex- support -1 oggi ng
"docker-entrypoint.s..!
0.0.0.0:6379->6379
edgex-redis
"docker-entrypoint.s..!
0. 0. 0. 0: 8400- >8400/ tcp, 8300-8302/tcp, 8301-8302/udp, 8600/tcp, 8600/ udp

edgex- cor e-consu

or g: 10004/ docker - edgex- vol une: nast er "/bin/sh -c '/usr/bi."

For performance reason, reader probably wants to run eKuiper with native approach. But you may find that EdgeX cannot be used with the downloaded
eKuiper binary packages. It's because that EdgeX message bus relies on zer onq library. If zer ong library cannot be found in the library search path, it
cannot be started. So it will have those eKuiper users who do not want to use EdgeX install the zer onq library as well. For this reason, the default
downloaded eKuiper package does NOT have embedded support for EdgeX. If reader wants to support EdgeX in native packages, you can either make
a native package by running command meke pkg_wi t h_edgex, or just copy the binary package from docker container.

Create a stream

There are two approaches to manage stream, you can use your preferred approach.

Option 1: Use Rest API

Notice: Rest API of eKuiper in EdgeX uses 48075 instead of default 9081. So please change 9081 to 48075 in all of documents when you use EdgeX

eKuiper Rest API.

The next step is to create a stream that can consume data from EdgeX message bus. Please change $kui per _docker to eKuiper docker instance IP

address.

curl -X PCST \

htt p: // $kui per _docker: 48075/ streans \

-H ' Content - Type

-d ' {

application/json' \

"sql": "create streamdeno() WTH (FORVAT=\"JSON\", TYPE=\"edgex\")"

For other Rest APIs, please refer to this doc.

Option 2: Use eKuiper CLI

https://github.com/emqx/kuiper/issues/596
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/restapi/overview.md

Run following command to enter the running eKuiper docker instance.
docker exec -it edgex-kuiper /bin/sh

Use following command to create a stream named deno.

bi n/ kui per create streamdeno' () WTH (FORVAT="JSON', TYPE="edgex")"

For other command line tools, please refer to this doc.

Now the stream is created. But you maybe curious about how eKuiper knows the message bus IP address & port, because such information are not
specified in CREATE STREAMstatement. Those configurations are managed in et ¢/ sour ces/ edgex. yanl , you can type cat et c/ sour ces/ edgex.
yam command to take a look at the contents of file. If you have different server, ports & service server configurations, please update it accordingly. As
mentioned previously, these configurations could be overrode when bring-up the Docker instances.

#d obal Edgex configurations
defaul t:
protocol: tcp
server: | ocal host
port: 5566
topic: events
serviceServer: http://1ocal host: 48080

For more detailed information of configuration file, please refer to this doc.

Create arule

Let's create a rule that send result data to an MQTT broker, for detailed information of MQTT sink, please refer to this link. Similar to create a stream, you
can also choose REST or CLI to manage rules.

So the below rule will get all of values from event topic. The sink result will

® Published to topic r esul t of public MQTT broker br oker . engx. i o.
® Print to log file.

Option 1: Use Rest API

curl -X POST \
htt p: // $kui per _server: 48075/ rul es \
-H ' Content-Type: application/json' \

-d ‘{
"id": "rulel",
"sql": "SELECT * FROM deno",
"actions": [
"mott":
"server": "tcp://broker.engx.io:1883",
"topic": "result",
"clientld": "denp_001"
}
.
{
"10g": {}

]
}

Option 2: Use eKuiper CLI

You can create a rule file with any text editor, and copy following contents into it. Let's say the file name is r ul e. t xt .

{

"sql": "SELECT * from denpn",
"actions": [
"mott":
"server": "tcp://broker.engx.io:1883",
"topic": "result",
"clientld": "deno_001"
}
IE
{
"10g": {}

]
}

In the running eKuiper instance, and execute following command.

https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/cli/overview.md
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/rules/sources/edgex.md
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/rules/sinks/mqtt.md
http://broker.emqx.io

$ bin/kuiper create rule rulel -f rule.txt

Connecting to 127.0.0. 1:20498. ..

Creating a newrule fromfile rule.txt.

Rul e rul el was created successfully, please use 'cli getstatus rule rulel' command to get rule status.

If you want to send analysis result to another sink, please refer to other sinks that supported in eKuiper.

Now you can also take a look at the log file under | og/ st r eam | og, or through command docker | ogs edgex- kui per to see detailed info of rule.

time="2020-04-17T06: 32: 242" | evel =i nfo nmsg="Servi ng kui per (version - 0.3.1-4-g9e63fel) on port 20498, and
restful api on port 9081. \n" file="server.go: 101"

ti me="2020-04- 17T06: 32: 24Z" | evel =i nfo nsg="The connection to edgex nessagebus is established successfully."
file="edgex_source. go: 95" rul e=rulel

time="2020-04-17T06: 32: 24Z" | evel =i nfo nsg="Successfully subscribed to edgex nmessagebus topic events." file="
edgex_source. go: 104" rul e=rul el

time="2020-04-17T06: 32: 247" | evel =i nfo nsg="The connection to server tcp://broker.engx.io: 1883 was established
successfully" file="mgtt_sink.go: 161" rule=rulel

time="2020-04-17T06: 32: 25Z" | evel =info nsg="Get 24 of value descriptors fromservice." file="edgex_source. go: 223"
time="2020-04-17T06: 32: 252" | evel =info msg="sink result for rule rulel: [{\"int32\":-697766590}]" file="1o0g_sink
go: 16" rule=rulel

time="2020- 04- 17T06: 32: 257" | evel =info msg="sink result for rule rulel: [{\"int8\":-47}]" file="1o0g_sink.go: 16"
rul e=rul el

ti me="2020-04- 17T06: 32: 25Z" | evel =info nsg="sink result for rule rulel: [{\"int16\":-318}]" file="log_sink.go: 16"
rul e=rul el

ti me="2020-04- 17T06: 32: 25Z" | evel =info nsg="sink result for rule rulel: [{\"int64\":-8680421421398846880}]" file="
| og_si nk. go: 16" rul e=rul el

time="2020-04-17T06: 32: 31Z" | evel =info neg="sink result for rule rulel: [{\"bool\":true}]" file="Ilog_sink.go: 16"
rul e=rul el

Monitor analysis result

Since all of the analysis result are published to t cp: / / br oker . engx. i 0: 1883, so you can just use below nbsqui t t o_sub command to monitor the
result. You can also use other MQTT client tools.

$ nosquitto_sub -h broker.engx.io -t result
[{"bool ":true}]

[{"bool ": fal se}]

[{"bool ":true}]

[{"randonval ue_i nt 16": 3287}]
[{"float64":8.41326e+306}]
[{"randomval ue_i nt 32": - 1872949486}]
[{"randonval ue_i nt 8":-53}]
[{"int64":-1829499332806053678}]
[{"int32":-1560624981}]
[{"int16":8991}]

[{"int8":-4}]

[{"bool ":true}]

[{"bool ": fal se}]
[{"float64":1.737076e+306}]

You can also type below command to look at the rule execution status. The corresponding REST API is also available for getting rule status, please check r
elated document.

https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/rules/overview.md#actions
tcp://broker.emqx.io:1883
https://www.emqx.io/blog/mqtt-client-tools
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/restapi/overview.md
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/restapi/overview.md

bi n/ kui per getstatus rule rulel
Connecting to 127.0.0. 1:20498. ..

{
"source_denp_0_records_in_total ": 29,
"source_denp_0_records_out_total": 29,
"source_denp_0_exceptions_total": O,
"source_deno_0_process_| atency_ns": 0,
"source_denp_0_buffer_length": O,
"source_deno_0_l| ast _i nvocati on": "2020-04-17T10: 30: 09. 294337",
"op_preprocessor_denp_0_records_in_total ": 29,
"op_preprocessor_denp_0_records_out _total": 29,
"op_preprocessor_denp_0_exceptions_total": O,
"op_preprocessor_deno_0_process_| atency_mns": 0,
"op_preprocessor_deno_0_buffer_length": 0,
"op_preprocessor_denp_0_| ast _i nvocation": "2020-04-17T10: 30: 09. 294355",
"op_filter_O_records_in_total": 29,
"op_filter_0O_records_out_total": 21,
"op_filter_0O_exceptions_total": O,
"op_filter_O process_latency_ns": O,
"op_filter_O_buffer_length": O,
"op_filter_0O_last_invocation": "2020-04-17T10: 30: 09. 294362",
"op_project_0_records_in_total": 21,
"op_project_0_records_out_total": 21,
"op_project_0_exceptions_total": O,
"op_project_0_process_|latency_ns": 0,
"op_project_0_buffer_length": O,
"op_project_0_last_invocation": "2020-04-17T10: 30: 09. 294382",
"sink_ngtt_0_0_records_in_total ": 21,
"sink_ngtt_0_0_records_out_total": 21,
"sink_ngtt_0_0_exceptions_total": O,
"sink_ngtt_0_0_process_|l atency_ns": 0,
"sink_ngtt_0_0_buffer_length": 1,
"sink_ngtt_0_0_l| ast _i nvocati on": "2020-04-17T10: 30: 09. 294423"

}

Summary

In this tutorial, we introduce a very simple use of EdgeX eKuiper rule engine. If having any issues regarding to use of eKuiper rule engine, you can open
issues in EdgeX or eKuiper Github respository.

More Excecise

Current rule does not filter any data that are sent to eKuiper, so how to filter data? Please drop rule and change the SQL in previous rule accordingly. After
update the rule file, and then deploy the rule again. Please monitor the r esul t topic of MQTT broker, and please verify see if the rule works or not.

Extended Reading

® Starting from eKuiper 0.9.1 version, a visualized web Ul is released with a separated Docker image. You can manage the streams, rules and
plugins through web page.

® Read EdgeX source for more detailed information of configurations and data type conversion.

® How to use meta function to extract additional data from EdgeX message bus? There are some other information are sent along with device
service, such as event created time, event id etc. If you want to use such metadata information in your SQL statements, please refer to this doc.

® Use Golang template to customize analaysis result in eKuiper Before the analysis result is sent to different sinks, the data template can be used
to make more processing. You can refer to this doc for more scenarios of using data templates.

® EdgeX message bus sink doc. The document describes how to use EdgeX message bus sink. If you'd like to have your analysis result be
consumed by other EdgeX services, you can send analysis data with EdgeX data format through this sink, and other EdgeX services can
subscribe new message bus exposed by eKuiper sink.

® eKuiper plugin development tutorial: eKuiper plugin is based on the plugin mechanism of Golang, users can build loosely-coupled plugin
applications, dynamic loading and binding when it is running. You can refer to this article if you're interested in eKuiper plugin development.

If you want to explore more features of eKuiper, please refer to below resources.

® eKuiper Github code repository
® eKuiper reference guide

https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/cli/rules.md
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/manager-ui/overview.md
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/rules/sources/edgex.md
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/edgex/edgex_meta.md
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/rules/data_template.md
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/rules/sinks/edgex.md
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/plugins/plugins_tutorial.md
https://github.com/emqx/kuiper/
https://github.com/emqx/kuiper/blob/edgex/docs/en_US/reference.md

	Edgex Rule Engine Tutorial

