
Network Instance VRFs

Background and Motivation

Currently we keep the EVE device networking and the different network instances for application networking separated using a combination of IP rules 
(PBR = policy based routing) and ACLs (iptables).

The required semantics is to have . For example, applications deployed inside network instances separated from each other as much as possible
different network instances should not be able to communicate with each other directly. Only through so-called "port maps", which are effectively port-
forwarding ACL rules, network communication can be established between applications on different networks. But even in this case, traffic does not get 
forwarded between networks directly, instead it is hairpinned via an uplink interface where the port mapping is configured. For networks using different 
uplink interfaces it is even required to hairpin the traffic outside the box, even if the communicating applications are deployed on the same edge device.

The IPsec-based VPN network instances should be even more isolated from each other and other networks. Application inside a VPN network should only 
be able to talk to apps in the same network or with endpoints on the other side of the tunnel.

The following drawing visually depict the current EVE implementation with an example of 4 apps, 2 local NIs, one switch NI and some (non-overlapping) IP 
addressing ("NI" is abbreviation we use for "network instance"):

Note that the ACLs are mostly implemented on the network-instance side to provide drop and rate limiting, and also to mark packets for flowlog. There are 
a few iptables rules on the uplink (right) side to block some TCP/UDP ports from remote access etc.

While the current implementation is successful in prohibiting a direct communication between network instances and facilitating hairpinning inside or 
outside the device based on the aforementioned criteria, it .fails to isolate networks when it comes to IP address allocation

For example, it is not possible to deploy multiple network instances with the same or overlapping IP subnets. A significant risk of IP address collisions 
exists also between external (uplink) and internal (downlink) networks. A local network instance should be completely isolated and independent from the 
outside networks with a NAT placed in-between. Similarly, traffic selectors of multiple VPN networks could overlap, thus preventing from opening the 
tunnels at the same time, which is also against our semantics of network instance isolation.

We can get better separation, including  if we split network instances using either VRFs or with network namespaces. Furthermore, if IP address isolation
we use a containerd task to run network instance networking (especially the external processes like dnsmasq, radvd, etc.), we can even isolate resource 
usage and apply limiting. We will now describe VRFs and network instances separately, with a bit more focus on VRFs, which, after some internal 
discussion, are now the preferred choice.



VRF Proposal

VRF device combined with IP rules provides the ability to create virtual routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the Linux 
network stack. VRF essentially provides a , i.e. multiple interfaces can have the same IP address assigned if light-weight L3-level (and above) isolation
they are inside different VRF domains and, similarly, multiple processes can listen on the same IP address. Compare that with network namespaces, 
which provide a full device-level isolation, but at a cost of a higher overhead and with additional challenges for the management plane (see "Network 
Namespaces" below).

VRF is implemented as just another type of network device that can be created and described using the . For every VRF, there is a separateip command  
 together with a , matching packets with the corresponding VRF routing table. For an interface to enter routing table automatically created special IP rule

a VRF domain, it has to be  under the VRF device (just like interfaces are enslaved under a bridge). enslaved The main drawback of VRFs is that 
processes have to  to the VRF in which they want to operate. This, however, can be solved outside of those processes by explicitly bind their sockets hoo
king up into the socket() function call using LD_PRELOAD. Alternatively, ip vrf exec command can be used to bind a process with a VRF using some eBPF 

. We can also make upstream contributions and add native VRF support to applications that we need to run inside VRFs, i.e. dnsmasq and radvd magic
(currently neither of those are VRF aware).

Diagram below shows how the separation of network instances using VRFs would look like. For every local/vpn network instance, zedrouter would create a 
separate VRF (automatically with its own routing table) and put the NI bridge under this VRF device. External processes providing network services 
separately for each NI, i.e. dnsmasq and radvd (and http server as a go routine of zedbox), would have their sockets bound to the VRF (most likely using 
'ip vrf exec'). There will be no VRFs created for switch network instances. From EVE point of view these are L2-only networks.

Uplink interfaces would remain in the default (i.e. not configured) VRF domain and a VETH pair per NI would be used to interconnect the downlink (left) 
and the uplink (right) side (i.e. the left side of the VETH is enslaved under the NI VRF, while the right side remains in the default VRF domain). VETH 
interface will operate in the L3 mode - it will have IP addresses assigned on both ends from a /30 subnet. What supernet to allocate these subnets from is 
up to the discussion. It should be selected such that the risk of . Already considered and tested are these  collision with other routed subnets is minimal
special-purpose or reserved subnets:  0.0.0.0/8, 127.0.0.0/8, 169.254.0.0/16 and 240.0.0.0/4. However, only the last two turned out to be routable by the 
Linux network stack without issues.

Because we want to allow network instances to have overlapping IP subnets (between each other and with host networks), packet leaving NI VRF and 
entering the default VRF has to be S-NATed to the VETH IP. Given the presence of this VETH interface and the NAT rule, packets traveling between 
applications (deployed in local NIs) and external endpoints will be routed and NATed inside the pillar container . Similarly, port mapping ACL rules twice
will have to be implemented as , one for the uplink interface and the second for the corresponding VETH interface.two D-NAT pre-routing rules

There will be no VETH links between VRFs of network instances. The current behavior of applications from different networks not being able to talk to each 
other directly will be preserved (and enforced with stronger measures). Hairpinning through portmaps will remain as the only option for communication for 
network-separated applications. In the default VRF domain there will be . Using ip rules each network instance will  one routing table per uplink interface
be matched with the RT of the uplink that was selected for that network by the configuration/probing. Network instances that use different uplinks at a 
given moment will be completely isolated from each other, not even sharing any RT along the routing path. Consequently, connections between uplink-
separated NIs can only be established by hairpinning outside the edge device (through portmaps).

The implementation of ACLs is not going to undergo any significant changes, the existing iptables rules will remain pretty much the same (aside for the two 
DNAT rules for each portmap). However, using only VRFs is not enough for isolation when NAT and connection marking is being used (for ACLs and 
flowlog). It is necessary to also  between different VRF domains to avoid collisions with overlapping IP addressing. This can separate conntrack entries
be easily accomplished using  (conntrack entries split using integer zone IDs). A NI-specific conntrack (CT) zone is used in-between the  conntrack zones
bridge and the NI-side of the VETH (same scope as that of the NI VRF). For the default routing table (between uplinks and the uplink-side of VETHs), we 
could leave the default CT zone 0. However, experiments showed that when VRF devices are being used the default CT zone stops working correctly, 
resulting in skipped iptables rules and some strange behaviour. Using any non-zero CT zone seems to fix the issue (see PoC section below).

In the diagram below, each separate VRF domain (combined with its own CT zone) is outline and highlighted using a red rectangle.

https://www.kernel.org/doc/Documentation/networking/vrf.txt
https://github.com/milan-zededa/evenet/blob/main/images/vswitch/setnif.sh#L35-L80
https://github.com/milan-zededa/evenet/blob/main/images/vswitch/setnif.sh#L35-L80
https://man7.org/linux/man-pages/man8/ip-vrf.8.html
https://lists.openwall.net/netdev/2016/12/10/70
https://lists.openwall.net/netdev/2016/12/10/70
https://lwn.net/Articles/370152/


Special attention should be given to VPN networks. For the most part, these networks would be extended with VRFs just like the local network instances. 
However, for strongSwan (IKE daemon) to operate in multi-VRF mode, we have to switch to . Using a special (an  Route-based VPN mode  XFRM device
enhanced alternative to VTI device), it is possible to bind an IPsec tunnel with a VRF domain as shown in the diagram below.

A  will continue operating for all VPN network instances. For every VPN NI there will be a  created single strongSwan process separate XFRM device
inside the NI VRF, linked with the corresponding IPsec connection configuration using . Packet sent from application will be routed by  XFRM interface ID
the VRF routing table via the associated XFRM device, which then determines which SAs to use for encryption. An encrypted (and encapsulated) packet 
then continues through the VETH pair into the default VRF domain where it is routed out by the uplink RT. In the opposite direction, the SPI field of the 
encrypted packet will link to the XFRM device and thus the VRF where the decrypted packet should be inserted into for forwarding (i.e. VETH is skipped in 
this direction).

With this, it will be possible to deploy multiple VPN network instances with overlapping traffic selectors and still route/encrypt/decrypt ly.unambiguous

Network Namespaces (alternative proposal)

https://wiki.strongswan.org/projects/strongswan/wiki/RouteBasedVPN
https://wiki.strongswan.org/projects/strongswan/wiki/RouteBasedVPN#XFRM-Interfaces-on-Linux


An alternative solution to VRFs is that instead of using per-NI VRF and CT zone, we could isolate on all network levels and run each Linux bridge and 
associated network interfaces plus external processes (dnsmasq, radvd, strongSwan ...) in a . separate network namespace For every new network 
instance zedrouter would create a new  (alternatively it could start a new containerd task with ), named network namespace its own network namespace
connected with the "default" net namespace using a VETH pair. Downlink interfaces have to be moved into the target network namespace before they are 
put under the bridge. The bridge part is currently done by hypervisors (veth.sh for containers, qemu & xen allow to specify bridge in the domU config). This 
would be removed and we would instead finalize downlink interface configuration ourselves in doActivateTail() of domain manager.

For the most part, this is very similar to the VRF proposal, in that both solutions use VETHs to route and NAT packets from/to apps twice. Also, PBR routes
/rules and iptables are very much the same, just spread across multiple namespaces.

The advantage of having multiple namespaces is a stronger isolation and not having all routes and iptables crammed in one network stack. Also, this 
solution is completely transparent to processes (like dnsmasq, radvd, etc.). The major downside of this solution is a higher overhead, in particular the 
increased memory footprint of the management plane as it is split into multiple processes (see below why it is needed). Also debugging will be somewhat 
more difficult. For example, for packet tracing one has to first switch to the proper network namespace or trace packets across multiple namespaces at 
once.

However, from the management-plane point of view this proposal is considerably more difficult to implement than VRFs. Working with multiple 
namespaces from the same process (e.g. zedbox) is possible but quite challenging. While each process has its own "default" namespace where it has 
started, individual threads can be switched between namespaces as needed. However, frequent switching between namespaces adds some overhead and 
it makes development and debugging even harder than it already is. For this reason, most network-related software products, including strongSwan for 
example, are intentionally not able to manage multiple network namespaces from a single process instance.

In Golang this is even more challenging since Go routines are provided instead of threads. Because Go routine can travel between threads as it executes, 
it can potentially . It is possible to lock a Go routine with its current thread, but any Go routine spawned from inside will change namespace mid-execution
start back at the process default namespace. This gotcha is nicely .described here

And so while switching to another namespace, locking the thread, doing something quick (not asynchronous, e.g. listing conntracks) and immediately 
switching back is safe, running a long asynchronous task (e.g. tcp server, packet capture) has the risk of having some Go sub-routines escaping the 
namespace, which leads to some   bugs.obscure

In general, it is recommended to  that needs to be operated in. For this reason, this proposal spawn a new child process for every network namespace
will follow up on the “ ” Bridge Manager described here.

The main idea of Bridge Manager is to split an overloaded zedrouter and run management of every network instance in a separate Go routine. In this 
proposal we would go even further and suggest to run Bridge Manager (here called "NetNS manager" because it would manage an entire namespace) as 
a child process of zedbox (or as a separate containerd task). The main communication mechanism of EVE - pubsub - is already prepared for interprocess 

.messaging

Splitting the management plane into multiple processes increases overhead and for edge devices the most concerning is the memory footprint. 
Experimentally, it was estimated that the size of the NetNS binary would be around 22 MB.This was done simply by creating a Go binary importing all 
packages that are expected to be needed. Please note that this is only a subset of total process RSS. The rest is harder to estimate without fully 
implementing the NetNS manager. Given that we should support up to 256 network instances, this quickly adds up to hundreds of megabytes of extra 
memory usage.

The following diagram shows how network instances could be isolated from each other using network namespaces. As it can be seen, not only the network 
configuration is spread across namespaces, but also the management plane is split into multiple processes (all of which increases complexity and 
overhead, thus making this proposal less appealing).

https://man7.org/linux/man-pages/man8/ip-netns.8.html
https://github.com/opencontainers/runtime-spec/blob/1c3f411f041711bbeecf35ff7e93461ea6789220/specs-go/config.go#L202-L203
https://www.weave.works/blog/linux-namespaces-golang-followup
https://wiki.lfedge.org/display/EVE/Bridge+Manager


Proof of Concept

In order to  for all scenarios as intended, a PoC based on docker containers verify that the proposed network configuration would actually work
representing network stacks of (mock) apps, network instances and zedbox has been prepared. The source code for the PoC with diagrams and 
description can be found in this repository: https://github.com/milan-zededa/evenet

The idea was to come up with the simplest scenario (edge device configuration) that exercises all important network use-cases that EVE has to support (i.
e. all types of network instances, all possible routing paths, all kinds of ACLs, etc.) and includes some overlapping subnets so that network isolation is a 
requirement. Then using docker containers we simulate all network stacks present in the scenario and run shell scripts that create the same network 
configuration that EVE would apply if this proposal was implemented. With this we can quickly and easily validate the proposed network configuration 
changes before commencing any implementation work in the EVE repository.

The scenario that PoC simulates consists of 6 apps and 6 network instances (3 locals, 2 vpns and 1 switch), with some overlapping subnets and some 
ACLs defined on top of that. A detailed description of the scenario can be found in the top-level README file of the PoC repository. There is a PoC 
implementation with VRFs as well as with network namespaces, so that the two proposals can be compared and an informed decision which one to 
choose can be made.

, overcoming the challenge of network IP subnet and VPN traffic selector Both PoCs successfully implement the scenario and pass all devised tests
collisions (see here and here). Notice that tests also cover hairpinning inside and outside the device (which one to do depends on whether src and dst NIs 
use the same uplink). The reason why we prefer to use VRFs, is their lower footprint and the fact that they are easier to manage.

For VETHs, subnets 127.0.0.0/8 and 0.0.0.0/8 sadly failed the validation - routing does not work as expected/desired (even if the local table is tweaked in 
various ways). On the other hand, and  can be routed between network namespaces and VRFs without issues. But for  169.254.0.0/16  240.0.0.0/4
169.254.0.0/16 we need to select a subnet that does not contain 169.254.169.254, which is already used for the HTTP server with cloud-init metadata. 
After some internal discussion, we are more inclined to allocate VETH IPs from the (most likely) forever-reserved Class E subnet 240.0.0.0/4.

Development Steps (VRF Proposal)

https://github.com/milan-zededa/evenet
https://github.com/milan-zededa/evenet/blob/main/MULTI-NS.md#deploy--test
https://github.com/milan-zededa/evenet/blob/main/MULTI-VRF.md#deploy--test


PR 1:
        * Build Linux kernel with VRF support

PR 2:
        * LD-PRELOAD library for VRF-unaware processes
            - or test 'ip vrf exec' as an alternative

PR 3:
        * Eden test for local networks with overlapping IP subnets
                - without VRFs this test will be failing (i.e. would not be merged until PR 4 is done)

PR 4:
        * Local & Switch Network instance (Create/Modify/Delete)
        * ACLs
        * Flow collection
        * Network instance metrics

PR 5:
        * Eden test for VPN networks with overlapping traffic selectors
                - without VRFs this test will be failing (i.e. would not be merged until PR 6 is done)

PR 6:
        * VPN Network instance
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