EVE Airplane Mode

Use Case

The Airplane mode (later renamed to "Radio Silence") was requested by an EVE customer. Their use case is very interesting. A truck will use an edge
device with EVE OS and LTE ONLY connectivity. The device will start running their applications and at some point they will have to start using explosives.
They would like to shut down all radios temporarily. During this time, the applications should keep running. It is not acceptable to restart the device during
this time as there are critical applications that are running on them.

Requirements

Firstly, for safety reasons it is essential that the radio-silence functionality is managed locally. Regardless of the controller connectivity status, the operator
working on the location should be able to enable/disable radios as needed.

We can assume that a keyboard, mouse and a monitor will be attached to the device. The operator should be able to change and view the radio status
using these peripherals. It is not required to add any additional hardware like a physical toggle button or an LED. The radio status could be therefore
managed via an application deployed on the device.

Background

Airplane mode in Linux

A typical Linux distribution uses the rfkill subsystem (RF stands for radio frequency). It is a generic interface for disabling any radio transmitter in the
system. When a transmitter is blocked, it shall not radiate any power.

The rfkill core provides an API for kernel drivers to register their radio transmitter with the kernel. Most importantly, an rfkill driver implements a method set
_bl ock for turning the radio device on and off. User-space programs, such as the NetworkManager or the rfkill tool, communicate with the rfkill core via / d
ev/rfkill device. For example, if you enable airplane mode in a Debian Linux distribution, behind the scenes the NetworkManager tries to change the
kernel rfkill state (same as running nncli radi o wwan of f).

However, this is all just plumbing and for us much more interesting is how rfkill drivers actually enable/disable radio transmitters. Following calls to
rfkill_register we can find implementations for all commonly used platforms. All of them, however, end up calling a closed-source device firmware through
ACPI. Nothing we can take inspiration from.

It seems that the majority of rfkill drivers are developed for use in laptops. Firmware of industrial computers often lacks rfkill support for cellular modem
(WiFi adapter typically can be disabled using rfkill). This is the case in particular for external modems connected over USB.

Airplane Mode in Android

Android does not utilize the rfkill subsystem. Instead, it glues telephony services with the radio hardware using Radio Interface Layer (RIL). It consists of a
stack of two components: a RIL Daemon and a Vendor RIL. Android provides a reference Vendor RIL, based on the Hayes AT command set, that can be
used as a quick start for telephony testing and a guide for commercial vendor RILs. For example, the reference RF power-switch handler (implementing R
L_REQUEST_RADI O_POWER request) uses AT+CFUN=0 command to switch the modem into a minimum functionality mode (without RF). Commercial
vendor RILs are likely also based on device-specific AT commands to manage their cellular modems.

Airplane mode in cellular modems

Looking at mobile broadband devices specifically (and omitting WiFi adapters for now), we can learn about airplane mode by studying the source code of
the ModemManager. Interestingly, this daemon is also used by NetworkManager to control cellular modems, just not for the airplane functionality. This is
probably because rfkill covers all types of devices with radio transmitters and perhaps the rfkill drivers also operate closer to the hardware than
ModemManager, which uses AT commands, QMI and MBIM protocols. The ModemManager is extensible via plugins to support new devices. For most
modern modems that support either QMI or MBIM protocols, there are already generic plugins MMBroadbandModemQmi and MMBroadbandModemMbim.

For QMI devices, the airplane mode is actually a low-power mode:

/*-k
* Qm DnmsQper at i nghbde:
* @M _DVS_OPERATI NG_MODE_ONLI NE: Device can acquire a system and nmake cal |l s.
* @M _DVS_OPERATI NG_MODE_LOW POWNER: Device has tenporarily disabled RF.
*
* (Qperating node of the device.
*/

Here we can see how RF can be disabled using QMI. This can be done using CLI with:

ugm -d /dev/cdc-wdnD --set-device-operating-node | ow_power

https://www.kernel.org/doc/Documentation/rfkill.txt
https://elixir.bootlin.com/linux/latest/source/include/linux/rfkill.h#L61
https://wiki.archlinux.org/title/NetworkManager
https://linux.die.net/man/1/rfkill
https://github.com/NetworkManager/NetworkManager/blob/main/src/core/nm-manager.c#L7668
https://github.com/NetworkManager/NetworkManager/blob/main/src/core/nm-manager.c#L7668
https://elixir.bootlin.com/linux/latest/C/ident/rfkill_register
https://elixir.bootlin.com/linux/latest/C/ident/rfkill_register
https://en.wikipedia.org/wiki/Radio_Interface_Layer
https://android.googlesource.com/platform/hardware/ril/+/donut-release/reference-ril/reference-ril.c#256
https://www.freedesktop.org/wiki/Software/ModemManager/
https://github.com/linux-mobile-broadband/ModemManager/blob/master/src/mm-broadband-modem-qmi.c#L1877-L1886

To obtain the current operating mode, we have to use more feature-rich gmi cl i :
gmcli -d /dev/cdc-wdnD --dns-get-operating-node

For MBIM-enabled devices, this is how ModemManager disables radio.

The same can be done using mbi ncl i :

mbincli -p -d /dev/cdc-wdnD --set-radi o-state on]of f

mbincli -p -d /dev/cdc-wdnD --query-radi o-state

Not all modems implement QMI or MBIM. For those there are modem-specific plugins, typically based on AT commands. As it happens, most modems can
be programmed to turn off the radio using the AT+CFUN=4 command. “AT+CFUN’ means to change the phone's functionality and with the parameter “4” all
receive and transmit RF circuits are disabled.

EVE wwan Service

Currently, EVE OS is able to manage a single QMI or MBIM enabled LTE modem. There is a separate wwan service, running a shell script which
periodically checks the wwan connectivity and tries to (re)start and (re)connect the modem using ugqni and nbi ntl i tools. wwan service communicates
with zedbox using files written under / r un directory. Specifically, ni mpublishes the user configured APN into / r un/ accesspoi nt / wwan0 and the wwan
service publishes state data and metrics as several json files under / r un/ wwan. These are periodically read and included into device info/ metrics by
zedagent.

Currently, the wwan service is limited to one LTE network with one APN.

The wwan service behaviour can be described using the following pseudo-code:

wwan main:
use hard-coded config (device, interface nane, etc.)
enable nbim gm kernel nodul es
detect protocol (QM or MBI M
repeat indefinitely:
if connectivity check failed:
reset nodem
wait for device registration on the network
start network (take APN from/run/accesspoi nt/wwan0)
wait for data connectivity and | P address
configure interface and resolv. conf
publish state data (signal strength, IP configuration) under /run/wsan
sl eep 5m ns (watchdog not used for wwan)

EVE Radio-Silence mode Proposal

Overview

The main purpose of this document is to present a design proposal for the radio silence mode feature for EVE OS. Note that we use "Radio Silence"
instead of "Airplane mode". This is because in most likely use-cases for this feature the edge node will not be actually inside an airplane and the purpose
of disabled radio transmission will not be related to or limited to air travel safety. In industrial applications, the act of disabling all radio transmission for
safety or security reasons is more commonly referred to as "Radio Silence".

Firstly, given that the feature should be managed locally, we propose to leverage a recently added Local Profile server. The idea was to essentially allow a
locally deployed application to act as a local controller and override a (very small) subset of the device configuration received from the controller. Currently,
only the “profile” field can be overridden, hence the name. However, the feature was designed knowing that it could be extended in the future with more
device configuration options that need local override. The API of the Local Profile server defines endpoint / api / v1/ 1 ocal _profil e from which EVE
should periodically obtain a profile name and use it instead of the default profile selected by the controller. The endpoint content is a protobuf-serialized
message, which makes it easily extensible and allows to add more fields for the local override. However, for radio management we will define a separate P
OST endpoint, making it easier to remove/disable or to split from local profile server into a separate application if needed. For API details see “EVE API
Additions” below

The behavior (and to some degree the implementation) of this feature would be inherited from the Local Profile Server.
This means that:

® The application to act as a Local Profile Server is selected via the controller

® Local profile server has to authenticate itself to EVE OS using a token

® Configuration from Local Profile server overrides the configuration from the controller (even when the Local server is not currently running
/accessible/responsive). In this case, the radio silence is not actually configurable by the controller. The behavior is to act as if the feature was
disabled (i.e. radios are enabled) by the controller. This means that only Local profile server can enable it and by default (i.e without local profile
server app being deployed) the feature is disabled and radios are turned ON.

https://github.com/linux-mobile-broadband/ModemManager/blob/1051dd162c0b70074b71517282f142833d2b7422/src/mm-broadband-modem-mbim.c#L1766-L1788
https://gitlab.freedesktop.org/mobile-broadband/libmbim/-/blob/master/src/mbimcli/mbimcli-basic-connect.c#L1715-1726
https://github.com/linux-mobile-broadband/ModemManager/blob/master/plugins/wavecom/mm-broadband-modem-wavecom.c#L1182-L1195
https://github.com/lf-edge/eve/blob/master/pkg/wwan/usr/bin/wwan-init.sh
https://en.wikipedia.org/wiki/Radio_silence
https://docs.google.com/document/d/1S8oJ9ekO0mG7w5GvkHttzkfdR3Ol_DeMO_zw3AwLQno/edit

® The configuration from the Local Profile Server is preserved between system reboots using the / per si st partition

The requested radio silence state would be periodically obtained by zedagent from the Local Profile server. The handler of this configuration option would
be the wwan service. The file-based communication between the zedagent /ni mand wwan service will be used to exchange the intended/actual radio
state. This is described in more details below under “EVE API Additions”.

The Local Profile Server from the user perspective would be in this case an application with a Ul containing a toggle button to switch the radio silence ON
and OFF. Given the safety requirements of the use-case, it is reasonable to also publish the current radio state periodically up to the application for the
user to check. To simplify, there will be a single POST API endpoint for both the radio configuration (intended state) and the radio state data (the actual
state).

EVE will periodically POST the actual state of the radio and may obtain the intended state in the response from the application.

A change requested by the user through this Ul would not have an immediate effect, however. If we used the same time interval as for the local profile
endpoint (t i mer. confi g.interval), it would by default take up to one minute for EVE to even notice the change in the required radio state. More delay
will be also added by asynchronous zedbox-wwan communication and the actual radio on/off operation will also take some time to take effect.

In order to decrease the latency, we propose to use a separate and shorter time period of 5 seconds for the radio POST API. And in order to simplify the
interaction between the application and EVE and to avoid race conditions, EVE will not POST radio state while the configuration change is still in-progress
(even if it exceeds the 5sec time interval). Radio state information published while a state change is ongoing wouldn’t have much sense/validity anyway.

The actual radio on/off operation will be done by wwan service using QM / MBI Mprotocol as opposed to modem-specific AT commands. As it has been
already mentioned, there are CLI tools available for both protocols that allow to change and read the radio power state.

Out of Scope

Implementation of the application providing the user with the radio silence ON/OFF button (i.e. the Local profile server) is out of scope of this document as
well. Here we only describe the interface between the application and EVE OS and describe the implementation changes needed to be done on the EVE
side.

Even though this document discusses the challenges associated with a device reboot and what effect it may have on the radio state, for this particular
customer it is actually unacceptable for a device to reboot during radio silence (due to the nature of their use-case). For now we therefore do not have to
have a solution of preserving the radio state immediately after booting, instead we should focus on avoiding a device reboot in the first place.

EVE API Additions

Local Profile Server (new endpoint)
POST /api/vl/radio

Where the radio request will carry a binary-encoded protobuf message containing the actual state of every radio:

message Radi oStatus {
/1 true if enabled AND successfully applied
bool radio_silence = 1;
/1 1f the last radio configuration change failed, error nessage is reported here.
/] Please note that there is also a per-npdem configuration error reported under Cellul arStatus.
string config_error = 2;
/1 for every LTE network
repeated CellularStatus cellular_status = 3;
/1 later we can add status for every WFi network

message Cel lul arStatus {
/1 Logical |abel assigned to the physical cellular nodem
string |l ogicallabel = 1;
org. | fedge. eve. cormon. ZCel | ul ar Modul el nfo nodul e = 2;
repeated org.|fedge. eve. coomon. ZSi ncardl nfo simcards = 3;
repeated org. | fedge. eve. common. ZCel | ul ar Provi der providers = 4;
string config_error = 10;
string probe_error = 11;

Where ZCel | ul ar Modul el nf o, ZSi ntar dl nf o and ZCel | ul ar Provi der are defined in api / prot o/ i nf o/ i nf 0. pr ot o as follows:

https://github.com/lf-edge/eve/blob/master/docs/CONFIG-PROPERTIES.md

enum ZSi ntardState {
Z_S| MCARD_STATE_| NVALI D
Z_SI MCARD_STATE_ASSI GNED
Z_S| MCARD_STATE_PROVI SI ONED
Z_S| MCARD_STATE_ACTI VE
Z_SI MCARD_STATE_SUSPENDED
Z_S| MCARD_STATE_CANCELLED

1
GRWNEO

}

message ZSi ncardlinfo {
/1 Name is a SIMcard identifier. For exanple ICCID if avail able.
/1 Guaranteed to be unique only in the scope of the edge node.
string nanme = 1;
/1 Reference to ZCel | ul ar Modul el nf 0. name
string cell_nodul e_nane = 2;
string inmsi = 3;
string iccid = 4;
ZSi ncardState state = 5;
}

message ZCel | ul ar Modul el nfo {
/1 Name is a nmodule identifier. For exanple |IMEl if avail able.
/1 Guaranteed to be unique only in the scope of the edge node.
string nanme = 1;

string imei = 2;

string firmwvare_version = 3;

string nodel = 4;

ZCel | ul ar OperatingState operating_state = 5;
ZCel | ul ar Control Protocol control _protocol = 6;

}

enum ZCel | ul ar OperatingState {
OPERATI NG_STATE_UNSPECI FI ED = 0;
OPERATI NG_STATE_OFFLI NE = 1;
OPERATI NG_STATE_RADI O OFF = 2; // AKA radio silence
OPERATI NG_STATE_ONLI NE = 3;
OPERATI NG_STATE_ONLI NE_AND_CONNECTED = 4;
OPERATI NG_STATE_UNRECOGNI ZED = 5;
}

enum ZCel | ul ar Cont r ol Prot ocol {
CONTROL_PROTOCOL_UNSPECI FI ED = 0;
CONTROL_PROTOCOL_QM = 1;
CONTROL_PROTOCOL_MBI M = 2;

}

nessage ZCel | ul ar Provi der {
/1 Public land nobile network code.
string plm = 1;
string description = 2;
/1 True if this is the provider currently being used.
bool current_serving = 3;
bool roamng = 4;

The Local profile server application may either reply with status 204 (No content), acknowledging the received state data update but not requiring any
configuration changes, or return 200 (OK) and append response body with the intended radio state encoded using this proto message:

message Radi oConfig {
string server_token = 1;
bool radio_silence = 2;

If the actual state and the returned intended state differ, EVE will trigger the operation of applying the intended state (e.g. disabling the radio). The
outcome of this operation (i.e. the new state, with potential error message if the change failed) will be published by the next POST call. If the actual and the
intended state are the same, EVE will not perform any radio state changes at least until the next POST call.

EVE API - device configuration (i.e. APl between EVE and the controller)

Since we are reusing the Local profile server here, the existing configuration fields are sufficient to enable and select the application that will manage the
radio state.

Specifically, these two parameters will be reused for the radio silence purposes:

nessage EdgeDevConfig {

/1 local _profile_server, if set, indicates a hostname/|Pv4/|Pv6 address and
/1 optional port number at which EVE will request for a local profile.

/1 1f such a local profile is retrieved, it will override the global _profile.
/1 The syntax follows the usual URL server nane syntax thus the follow ng
/] are exanple valid strings:

I [fe80::1]:1234

11 10.1.1.1:1234

I host nane: 1234

/1 [fe80::1]

11 10.1.1.1

I host name

/1 1f the port nunber is not specified, it will default to 8888

string local _profile_server = 28;

/'l Together with a local _profile_server one can specify a

/1 profile_server_token. EVE nust verify that the response fromthe

/1 local _profile_server contains this token.

string profile_server_token = 29;

As a result, no changes/additions are needed to be implemented on the controller side. Only the Ul / documentation could mention that there is this
additional usage of the local profile server. Also, the current state of radio will be presented to the controller (see below) and it could be therefore displayed
alongside other network state information.

EVE API - device info (i.e. APl between EVE and the controller)

message Devi cePort {

Wrel essStatus wirel essStatus = XY;

message Wrel essStatus {
/1 either LTE or WFi (or not wireless)
Wrel essType type = 1;
/1 for LTE
repeated Cellul arStatus cellular_status = 5;
/] later we nmay add status for WFi

}

message ZCel lul arStatus {
/1 Name reference (ZCell ul ar Modul el nfo. name) to the corresponding cellular nodul e
/Il fromthe list ZlnfoDevice.cellularMdules
string cellular_nodule = 1;
/!l Each itemis a nane reference (ZSintardlnfo.nanme) to a SIMcard fromthe |ist Zl nfoDevice.sinCards
/1 Ordered by slot nunbers.
repeated string simcards = 2;
/1 List of available cellular service providers.
repeated org.|fedge. eve. common. ZCel | ul ar Provi der providers = 3;
/1 1f EVE failed to configure the cellular connection, the error is published here.
string config_error = 10;
[/l if the connectivity probing is failing, error is reported here
/1 (see Cellul arConnecti vityProbe).
string probe_error = 11;

EVE API - device metrics (requested by the same customer)

nessage deviceMetric {

repeated CellularMetric cellular_metric = XY;

}

message CellularMetric {
/1 1ogicallabel of the physical device

string |l ogicallabel = 1;
Cel | ul ar Si gnal Strength signal _strength = 2;
Cel | ul ar Packet St at s packet _stats = 3;

}

/1 Val ue of OxFFFF neans that the particular nmetric is not avail able.
nessage Cel | ul ar Signal Strength {

int32 rssi = 1;

int32 rsrq = 2;

int32 rsrp = 3;

int32 snr = 4;
}

/] Collected by the nbdemitself and can be obtai ned using
/l e.g. "qmicli -d /dev/cdc-wdnD --wds-get-packet-statistics"”
nessage Cel | ul ar Packet Stats {

/1l NetworkStats are already defined in EVE API

NetworkStats rx = 1;

NetworkStats tx = 2;

Interface between wwan service and zedbox

A new /run/wnan/ confi g.j son will be added to submit LTE configuration from ni mto wwan service, including the required radio state, e.g.:

"radi o-silence": true,
"networks": [
{
"l ogical -1abel": "Ite-nmodeml", # |ogical |abel assigned to the physical nodem device
"physi cal -addrs": {
nimwll specify one/sone of these. Wth nultiple LTE nodens the USB address
is the nost unanbi guous and reliable.

"interface": "wwanO0",
"usb": "1:2.3", # <bus>:[port]
“pci": "0000:11:00.0",

b

"apns": ["internet"],

"probe": {

"di sable": false
"address": "1.1.1.1" # default is 8.8.8.8

Note: i nterface/ usb/ pci will be obtained by ni mfrom Assi gnabl eAdapt er s based on the PhyLabel of Net wor kPort Confi g.

Next a new / r un/ wwan/ st at us. j son with cellular state data will be published by wwan service for ni mto read. Status file will contain SHA256
checksum of the last applied revision of confi g. j son. With this, EVE will know when there are no more pending configuration changes, so that it is ready
to publish radio state up to the application.

/1 sha256 checksum of config.json applied at the tine of publishing this info
"config-checksunt: "d14a028c2a3a2bc9476102bb288234c415a2b01f 828eab2ac5b3e42f",

"net wor ks":

{

controller

"unr ecogni zed"

| oss, tine 1029ns)",

[

"l ogical -1abel": "Ite-nmodeml", # can be enpty for nodens not configured fromthe

"physi cal -addrs: {
all addresses will be filled by wwan service

“interface”: “wwan0”,
“usb”: “1:2.3", # <bus>:[port]
“pci": "0000:11:00. 0",
H
"cel lul ar-nodul e": {
“imei": “310170845466094",
"nodel ": "QUECTEL Mobil e Broadband Modul e",
"revision": "EC21ECGAR0O6A04MLG',
"control -protocol": "gm" | "nbinft,
"operating-node": "offline" | "online" | "online-and-connected" | "radio-off"
H
"simecards": [
{
"iccid": "8991101200003204514",
"imsi": "313460000000001"
}
1.
"config-error": ,
"probe-error": "Failed to ping 8.8.8.8 (2 packets transnitted, O received, 100% packet

"providers": [

{
"pl m": "310-410",
"description": "AT&T",
"current-serving": true,
"roam ng": false

I

{
"plm": "310-120",
"description": "Q2",
"current-serving": false,
"roam ng": false

}

Lastly, wwan service will also periodically publish / r un/ wwan/ met ri cs. j son with cellular metrics:

"networks": [

{
"l ogi cal-label": "Ite-nodeml", # can be enpty for nodens not configured fromthe
controller

"physi cal -addrs: {
all addresses will be filled by wwan service
“interface”: “wwan0”,
“usb”: “1:2.3", # <bus>:[port]
"pci": "0000:11:00.0"

}

"packet-stats": {
"rx-bytes": 456456,
"rx-packets": 1234,
"rx-drops": 0
"t x-bytes": 23485,
"t x- packets": 758,
"tx-drops": 12

}

"signal-info": {
"rssi": -42,
"rsrqg": -11,
"rsrp": -98,
"snr": 56

}

}
]
}

Application Behavior
Application acting as a Local Profile Server for the radio management is expected to behave as follows:

® Application provides Ul on the user-side and a HTTP server with / api / v1/ r adi o on the EVE-side
® The Ul should allow to:
© Toggle the radio silence intended state (ON/OFF) and as a result change the content that the HTTP server will respond with to / api / v1
/ radi o POST calls.
© Show the last received actual state and the last error if there was any (periodically POSTed to / api / v1/ r adi o by EVE)
© Show that an operation of changing the radio state is still ongoing (e.g. a “loading gif”). This starts from a moment of user changing the
intended state in the Ul, continues through the next POST API call (from which EVE learns the new intended state, which in this case
would differ from the actual state), up to the second next POST API call with the actual radio state after making the attempt to apply the
new intended config (please remember that for simplicity sake there will be no POST API calls while a change is ongoing).

zedbox Implementation Changes

Inside the zedbox process the handling of the radio silence mode will be split between zedagent and ni mmicroservices. Communication between the
Local profile server and EVE is already being done by zedagent . Periodically, it obtains the latest profile configuration, stores it into a file for persistence
and publishes it inside Zedagent St at us. For the radio-silence feature we will mostly reuse the same code and add Radi oSi | ence (the intended state)
into the structure:

type ZedAgent Status struct {

Radi 0Si | ence Radi 0Si | ence
}

Radi oSi | ence struct {
Enabl ed bool // from application
Changel nProgress bool // fromNM
ChangeRequest edAt tine.Time // recorded by zedagent after POST call

ni mwill subscribe for zedagent status updates. If Radi 0Si | ence. Enabl ed has changed, ni mwill trigger the operations of switching all radios ON
/OFF. This actually means to publish the new configuration into wwan (and later also wl an/ r f ki | |) service and (asynchronously) wait for updated state
data (acknowledging the latest config using a checksum). Once wwan service responds, ni mwill publish the new state back into zedagent using Devi ceN
et wor kSt at us, which will be also extended with the same Radi 0Si | ence structure (. ChangeRequest edAt copied from ZedAgent St at us; . Enabl ed
and . Changel nPr ogr ess updated by ni m). Inside, the per-port Net wor kPor t St at us will contain W r el essSt at us. zedagent will make another POS
call to/ api / v1/ r adi o only after it has received Devi ceNet wor kSt at us with RadioSilence of the same timestamp and with Changel nPr ogr ess

being false.

At the same time ni m will take into account the radio state during network connectivity testing. If the radio silence is ON (or a change is in progress), DPC
(device port configuration) verification will be skipped. The state of enabled radio silence will be indicated by both di ag and | edmanager microservices.
We could also introduce a distinct blinking count for the case of lost controller connectivity due to disabled radio(s) - e.g. 5 blinks.

Please note that there is also a timer inside EVE to reboot the device if it hasn’t had controller connectivity for an entire week. Since it is not expected that
radio silence will be turned ON for such an extended period of time in practice, this behavior will not change.

wwan Service Implementation Changes

The shell script of the wwan service will undergo few implementation changes. Firstly, it will stop using hard-coded configuration values and instead will
wait for and read / r un/ wan/ confi g. j son (written by ni m). It will then keep monitoring conf i g. j son file and will apply any changes, including the
radio-silence ON/OFF switch.

A secondary goal of these implementation changes is to prepare (either fully or at least partially) the wwan service for scenarios with multiple LTE modems
and multiple APNs.

The new wwan service behavior can be described using the following pseudo-code:

wwan main:
repeat indefinitely:
for every LTE network:
if /run/wnan/config.json changed/ appear ed:
detect protocol (QM or MBI M
reset nodem (i.e. disconnect)
(re)load config
set operating node (online or |ow power)
if not in the radio-silence node (operating node is "online") and connectivity check failed:
reset nodemif connected
wait for device registration on the network
start network(s) (take APN(s) from config.json)
wait for data connectivity and | P address
configure interface and resol v. conf
publish state data and netrics under /run/wwan/ (power state, signal strength, nodeminfo, etc.)
sl eep 5mins, break fromsleep if /run/wwan/config.json changes/ (dis)appears

Testing

To test the above it makes sense to implement a very basic local profile server app instance in the form of a container, which each time the POST method
is handled will look for a file at a specific location with the intended radio state to apply (as ON/OFF strings or 0/1).

At the same time the application could publish the state information obtained from EVE into another file with a hard-coded path. With this behavior it will be
easy to prepare test-scripts under eden.

More challenging for the automated testing is the LTE modem side. Unless we can somehow emulate a cellular modem, we will need a physical device
with a modem and preferably also with a registered SIM card available in a lab.

Issues and Risks

The main issue of this proposal is that the operation of switching the radio-silence ON/OFF is handled asynchronously with a considerable delay. Whereas
longer delay may be acceptable when edge device is managed from the cloud, there may be different user expectations for local management. Also, there
is a risk that the user may impatiently start to toggle the radio-silence ON/OFF button, triggering configuration changes before the previous one(s) had
been fully handled and potentially hitting some race condition scenarios.

In order to limit the latency and the risk of race conditions, we proposed a separate and a shorter time period between EVE calls to radio POST API.
Additionally, EVE will not make radio POST calls while a change is ongoing, thus enforcing at most one configuration change to be in progress at a time.
Conversely, when an radio state change is finalized, EVE may call radio POST API with radio state update immediately, instead of waiting for the timer to
fire. Internally, we will also try to minimize delay in communication between microservices (zedagent, nim wwan).

https://github.com/lf-edge/eve/blob/master/pkg/wwan/usr/bin/wwan-init.sh
https://github.com/lf-edge/eden

One more issue, or rather an open question, is whether we can actually combine the Local Profile server with the radio-silence mode or if there is a
customer requirement to have them separated and managed from different applications. This remains to be communicated with the customer. However, by
having / api / vl/radi o and/ api / vl/1 ocal _profil e as separate endpoints, it should be possible and relatively easy to allow them to be handled by
different applications.

	EVE Airplane Mode

