
1.
2.
3.

Kubernetes-compatible API for EVE Controller
This document reviews the standard functionality of an EVE controller, and how those might be implemented using Kubernetes. It is not tied to a particular
implementation of EVE controller, and as such may not cover all use cases. However, it should be extensible enough for any particular controller to adopt
this and then add the specific needs.

As of this writing, there are two known implementations of controllers: Open Source Adam, and commercial Zedcloud by ZEDEDA.

Adam is a reference OSS EVE controller. It has a very limited, but simple, custom REST API, described here as its adminHandler. Specifically, it
enables:

Adding, deleting, updating and reading onboard certificates
Adding, deleting, updating and reading an edge device
Getting and setting global options
Getting and setting device specific options
Reading a device’s logs, information, metrics and certificates
Reading and writing a device’s configuration as a single json blob, per the EVE API.

It is important to note that Adam provides no granular control over a device; it only knows how to return the entire device config as json, or receive an
entirely new device config as json.

Zedcloud is an enterprise-class commercial solution, offered as a fully-managed SaaS solution, along with device support and professional services, from
ZEDEDA. In addition to management services, and all of the abilities that Adam provides, ZEDEDA offers:

Multiple forms of authentication/authorization as well as enterprise SSO
An advanced UI
Reading and writing individual components of a device’s configuration, as well as validations, which, in turn, are composed by Zedcloud into a
device’s configuration.
Libraries of components, applications and images
Predefined templates
Many more features

The goal of this document is to provide an API design that:

Is compatible with Kubernetes.
Supports all of current Adam functionality.
Enables getting and setting of individual elements within the EVE API, thus enabling Adam to combine them into a full json device configuration.
Is extensible, so that commercial controllers, such as Zedcloud, could use the API as a basis for their own API which is 100% compatible with this
API, yet supports their rich additional features.

On the basis of the above:

Anything that is in Adam or an element of the EVE API will be covered here.
Anything that is not in the above will not be covered here.
The method of extensions will be covered here.

Note that elements of the EVE API that are intended entirely for control between the controller and device, will not have a Kubernetes-compatible
component, as those are not intended to be exposed to the end-user.

Why would we want to standardize on a Kubernetes-compatible API? The Kubernetes API comes with several advantages:

It provides a standardized interface.
It enables controller designers to leverage existing reliable CLI and SDK tooling with which large numbers of technologists and IT departments
are familiar.
It allows controller designers to replace entire parts of their code with an off-the-shelf component that is mature, reliable, production-tested, and
capable.
It enables controller providers to plug into almost any Kubernetes ecosystem component.
It eases locating skilled staff and shortens their learning curve.

Globally available CLI and clients in multiple languages, supported by a large distributed team of people, with a very large existing installed base
Ability of customers to define all EVE resources as code, in human-readable template files, and stored optionally in version control
Easy integration with any system that works with Kubernetes, e.g. CI systems or monitoring systems
Freely available server-side tooling that supports REST endpoints, validation, authentication, distributed highly-available processing, eventual
reconciliation, role-based access control based on API paths, including individual resource-level control; all standardized and used in production,
supported by a large number of engineers globally.

Custom Resources vs Native Kubernetes

Kubernetes is an API and a system for declaring workloads and scheduling them on nodes.

EVE includes an API and a system for declaring workloads and scheduling them on nodes.

https://github.com/lf-edge/adam/
https://zededa.com/product/
https://github.com/lf-edge/adam/blob/3c039a7bc56126fe7a9b33f5850cc37981e763aa/pkg/server/server.go#L149-L190
https://github.com/lf-edge/eve/tree/master/api

1.

2.

3.

4.

5.

6.

The basic concepts of EVE and Kubernetes are very similar. In addition to those concepts, EVE provides node management, and Kubernetes provides
higher-order scheduling options.

From that perspective, it is possible to use native Kubernetes resources:

Pod for AppInstance workload
Node for Edge Device

However, doing so brings minimal advantages and some real disadvantages.

Kubernetes itself will try to schedule the AppInstance workloads onto nodes, as it thinks they are normal Kubernetes pods. We can prevent that
using Pod node affinity, but it requires additional steps.
Kubernetes itself will try to schedule other workloads onto the Edge Devices, as it thinks they are normal Kubernetes nodes. We can prevent that
using node taints and pod tolerations, but it requires additional steps.
Kubernetes expects nodes to join in the normal fashion, using either a node certificate signed by an appropriate CA, or a one-time registration
token. These are similar, but not identical, to the process used by EVE. We can get around that by registering the nodes separately, but it is going
against the Kubernetes grain and can lead to issues.
Kubernetes expects nodes to be accessible and in regular communication with the control plane kube-apiserver, while EVE expects Edge
Devices to be out of touch, at times for extended periods. This will cause Kubernetes to mark these nodes as unavailable for scheduling, and
eventually remove them. The apiserver-node API is built with cloud assumptions of regular and reliable connectivity.
Kubernetes expects nodes to speak the undocumented kubelet API. This includes the internal elements, but also receiving pod specifications.
Using this would require implementing the kubelet API on the Edge Device or somehow convincing Kubernetes that it was.
Overloading the Node and Pod resources forces the cluster to be in a confusing state for users. This would make it difficult to deploy an EVE
controller onto a regular Kubernetes cluster, creating barriers to adoption.

For the above reasons, we implement the entire EVE API in custom resources (CRDs) and do not use the native APIs.

For the purposes of edification, we include a table comparing the two approaches here, and include what a native option looks like in an appendix.

The following table summarizes all resources. Original resources - either from the higher-level Adam abstraction or from the native EVE config - are in
black, reused native Kubernetes resources are in blue, custom resources are in green. Where a native resource inherently works well, even the custom
resource column will use the native resource, marked in blue.

EVE resource Native resource Custom resources

Onboarding OnboardCertificate

OnboardCertificateAuthority

DeviceCertificateAuthority

Device serial Device

Device certificate Device property

Edge Device Node Device

Global options ConfigMap ConfigMap

Edge Device options Annotations Device Annotations

Edge Application Instance Pod Application

Base OS Device Annotation

Device Config Device properties

Network Config NetworkConfig

Device Network DeviceNetwork

Application Network Annotations

Volume Persistent Volume Volume

Data Store StorageClass StorageClass

Content Tree Image Image

Scheduling (controller) Deployment

DaemonSet

ApplicationDeployment

ApplicationDaemonSet

Items that require special treatment:

Device Config - the entire json that is composed by a controller and sent to a device. The core controller reads the other elements and creates
this resource (which can be modified by the end-user). A separate controller reads it and applies it to the device via the API.
Read-only elements from the Edge Device - log, info, metrics - do not receive their own resources. Kubernetes resources are designed to be
created/modified, remain in relatively stable state and are of small size. They are stored in the Kubernetes backing store, by default etcd, and do
not fit large streaming elements like logs or metrics. When Kubernetes itself enables reading log information from a pod, it does so by leveraging
an element of the control-plane-to-kubelet API and open real-time streaming of logs.

The streaming elements - log, info, metrics - will stream to the controller according to the current EVE API design, are stored by the controller in its own
datastore, and controller clients open a streaming channel to the controller. There currently is no native construct within the Kubernetes API that knows
how to work with this flow, nor do CRDs have such elements.

Since Kubernetes has no native construct for this, we create a special “streaming” pod and service. This has a Web server and a Service in front of it,
exposing endpoints. We use RBAC to enable access to this pod.

This pod exposes endpoints:

/edgenode/<uuid>/metrics
/edgenode/<uuid>/info
/edgenode/<uuid>/log

The edgenode uuid must match one that is provided by the CRDs. Headers determine if the data should be streaming continuously or only show existing
data, while query parameters determine start and end times and filter parameters.

Design

Although we are creating entirely new custom resources, we follow these rules:

Follow native Kubernetes semantics as much as possible.
Where concepts closely parallel those that exist in native Kubernetes resources, we adopt the nomenclature and semantics as much as possible
into our custom resources.
Where standard annotations already exist to describe a concept, use those annotations.
Where a native resource is 100% reusable, without mismatches, reuse it.

Extensibility

Various controllers may choose to implement resources in different ways, including adding features to those resources that are not part of the primary
open source specification here.

The mechanism for extensibility in all cases is annotations and additional CRDs.

Annotations

If a controller needs to add functionality to a resource defined in this specification, it should add an annotation that matches its requirement. The annotation’
s prefix must match the controller provider’s unique domain. The prefix is reserved for standard annotations that are used as part of this eve.lfedge.org
specification.

As each controller implementation must implement the control loops for the various resources, including the standard ones, it is up to the specific controller’
s implementation of the control loop to manage the additional annotations.

Other controllers must ignore such annotations.

For example, if a fictitious commercial controller provider named edgesmart, with domain edgesmart.tv, wishes to add features to the DeviceNetwork
resource, it adds annotations using that domain.

apiVersion: "eve.lfedge.org/v1beta1"
kind: DeviceNetwork
metadata:
 name: default-ipv4
 namespace: enterprise1
 annotations:
 ctrl.edgesmart.tv/network-control: 42
spec:
 networkConfig: default-ipv4

Custom Resources

http://eve.lfedge.org

Controllers are not limited to the CRDs defined in this specification. Any controller may implement additional CRDs.

In doing so they must not use the apiVersion prefix defined in this specification, but rather must use one that matches a domain owned by them.

For example, if a fictitious commercial controller provider named edgesmart, with domain edgesmart.tv, wishes to have a new type of device security
configuration, they can create a CRD for it. Notice the apiVersion field.

apiVersion: "ctrl.edgesmart.tv/v1beta1"
kind: DeviceSecurityConfig
metadata:
 name: device-security-high
 namespace: enterprise1
spec:

...

Resource Versioning

Every resource type in Kubernetes has a unique identifier of group/version/kind. See the following references:

https://kubernetes.io/docs/reference/using-api/api-concepts/#resource-uris
https://kubernetes.io/docs/concepts/overview/kubernetes-api/#api-groups-and-versioning
https://kubernetes.io/docs/reference/using-api/#api-groups.

Using the above example:

apiVersion: "ctrl.edgesmart.tv/v1beta1"
kind: DeviceSecurityConfig
metadata:
 name: device-security-high
 namespace: enterprise1
spec:

...

The resource is:

group: ctrl.edgesmart.tv
version: v1beta1
kind: DeviceSecurityConfig

For all cases where we use native Kubernetes resources, we follow the native resource’s group/version/kind scheme.

For all CRDs created here:

Versions should follow the normal Kubernetes naming scheme of v1alpha1, v1alpha2, … v1beta1, v1beta2, … v1, v2alpha1, … v2, etc.
Group must be eve.lfedge.org
Group for resources defined by third-party extensions, such as commercial controllers, must use their own domain and not reuse eve.lfedge.
org

Unique Resource Identification

Every instance of a resource type is uniquely identified either by name or, for namespace-scoped resources, by namespace/name.

The EVE API, on the other hand, uses UUIDs, normally generated by the controller, to uniquely identify and link resources.

The API defined here follows the Kubernetes convention in using group/version/kind for identifying resource types, and name, with optional namespace, for
uniquely identifying instances of resources.

https://kubernetes.io/docs/reference/using-api/api-concepts/#resource-uris
https://kubernetes.io/docs/concepts/overview/kubernetes-api/#api-groups-and-versioning
https://kubernetes.io/docs/reference/using-api/#api-groups
http://ctrl.edgesmart.tv

It is up to the controller to create UUIDs, link them to specific name/namespace of resources internally, and map them to UUIDs sent to edge nodes via the
EVE API.

Authentication

Authentication leverages normal Kubernetes authentication and authorization paths, whether via static users, client certificates or SSO via OIDC.

Edge Device

The Device is very similar to the native Node, except that specification items that would be loaded into annotations are made part of the core spec.

apiVersion: eve.lfedge.org/v1beta1
kind: Device
metadata:
 labels:
 beta.kubernetes.io/arch: amd64
 beta.kubernetes.io/instance-type: eve
 beta.kubernetes.io/os: linux
 kubernetes.io/arch: amd64
 kubernetes.io/hostname: eve-device.lab1
 kubernetes.io/os: eve
 node.kubernetes.io/instance-type: eve
 annotations:
 eve.lfedge.org/node-type: virtual
 eve.lfedge.org/location: "texas/usa"
 eve.lfedge.org/activate: true

 name: eve-device.lab1
 Namespace: enterprise1
spec:

 eve-os-version: 8.10.0-kvm-amd64
 certificate:
TFMwdExTMUNSVWRKVGlCRFJWSlVTVVpKUTBGVVJTMHRMUzB0Q2sxSlNVTTFla05EUVdNclowRjNTVUpCWjBsQ1FWUkJUa0puYTNGb2EybEhPWGN3
UWtGUmMwWkJSRUZXVFZKTmQwVlJXVVJXVVZGRVJYZHdjbVJYU213S1kyMDFiR1JIVm5wTlFqUllSRlJKZVUxRWEzZE5WRUV6VGtSTmVrOVdiMWhF
VkUxNVRVUm5lVTlVUVROT1JFMTZUMVp2ZDBaVVJWUk5Ra1ZIUVRGVlJRcEJlRTFMWVROV2FWcFlTblZhV0ZKc1kzcERRMEZUU1hkRVVWbEtTMjlh
U1doMlkwNUJVVVZDUWxGQlJHZG5SVkJCUkVORFFWRnZRMmRuUlVKQlRDdG5DbWgxZVVzMEswZ3dSRGRXUVZWUUwwdEdWbFZRUkhRcllrTnhiMEZT
YkRNeVlteEhaV0pxYlZJeGRuZEdZalJYYlhkSVdEWmhOVFZMU0hWbmNGb3lUbThLVVVjNVQzcEhkMjVNWmpKeGRGSlBZbkpvTHk5bFkxbFBaRmxD
VjNWRWIySk1lbkYyYW05WllWZFlZVnB1TVhKVllYY3dSekZuYUhab1ZYUTVSbE56YlFwd1NHeHNXVzh3YzJOU1ZGRnhkMWRyUXpOaVprMXpkWFpY
Ukd0cGFsRlVjMnhzYTFBNVdXZENjMFJZYlZBNU4zaEdkR0pXT0ZodFVtOXpkREZhUTJOS0Nua3hiRUpSU0RGM1R6TlNNR2h4YkUxUGNGZG9ZVzlI
TUhObldqWldhR3g1YW5OVk0xZHFiWGhFVm1abE5tczNObmx0WmpCM1MxZGhVWHBoUjFGdlpGZ0tlQ3RQWTJSaWJHcDNlVXh4VWs1U2NWaFljRGRI
T1VOWVlXRkVPWGxYT1cxTlZ6UkRiVFI2VDFweU1VZG5SMDF3YkZSMGFWVTBiWFJSY1dKUmNYTjFWQXBaVVVRekwwaEVTVGg0TmpSMVZWQk5UbXRG
UTBGM1JVRkJZVTVEVFVWQmQwUm5XVVJXVWpCUVFWRklMMEpCVVVSQlowdHJUVUU0UjBFeFZXUkZkMFZDQ2k5M1VVWk5RVTFDUVdZNGQwaFJXVVJX
VWpCUFFrSlpSVVpJVWt0SVdHRXZTRFpPUlZaUFIzUjJSV00xVkRWM1UybHVkMGhOUVRCSFExTnhSMU5KWWpNS1JGRkZRa04zVlVGQk5FbENRVkZD
VDNKeWQzSllkbVo1U2xWUFIxaFZiMXB6ZEdoTFUxZ3ZhRGRtZVdGa01WSnNiV3RQYzBoMldtMDNORUpNZURGNVFncHhTREZMU1hjMlozQktWMUpH
UkVKc01GUlBPWFYxWWtvemNHMXRaMWx1WW5wUFRqRXJVVFJPV1dscWNsYzVXVEpwTXk5bWNDdEpTWEZFV0VwTFRYZHpDbFpsYjNWeWFHZFRTVkEx
U0RaSFJVMHZUalJLVjBJeU4xVTFXVWswVlZKQlNEWjFkRU14Vm5sblZVOUNUMHN3Tm5wQmVXbEJabWROVERseE0wVkZXRFVLVlZwVmVUQnVSRUV2
WVhGUFZqVkdZa3hMTmxWek1tWnRNREpXUW05SVZFNTRURXBWYlV4b2FFSTJWVkZQUkRKSlpGRTJiRWhhUXpNdk9HVk5PVTR3T0FvcmNWSklObXM1
UjI5dGRHbElUM2R5WkVwd1dqTklVa3huYVdoV1ZrUjZhbVIxWkRoMFVWUnRhVGwyUTBsWVFXeFJiek5vZWxabVJUbERhVTVEVEVSRENtWkZia2xV
WTA1Q2VXbEtRbU42TldaVVVuZFhWa1JKWlc5QlYzTkZabTVJY1ROSGVRb3RMUzB0TFVWT1JDQkRSVkpVU1VaSlEwRlVSUzB0TFMwdENnPT0= #
base64 encoded
 serial: "6654abbcc44"
 onboard:
TFMwdExTMUNSVWRKVGlCRFJWSlVTVVpKUTBGVVJTMHRMUzB0Q2sxSlNVTTFla05EUVdNclowRjNTVUpCWjBsQ1FWUkJUa0puYTNGb2EybEhPWGN3
UWtGUmMwWkJSRUZXVFZKTmQwVlJXVVJXVVZGRVJYZHdjbVJYU213S1kyMDFiR1JIVm5wTlFqUllSRlJKZVUxRWEzZE5WRUV6VGtSTmVrOVdiMWhF
VkUxNVRVUm5lVTlVUVROT1JFMTZUMVp2ZDBaVVJWUk5Ra1ZIUVRGVlJRcEJlRTFMWVROV2FWcFlTblZhV0ZKc1kzcERRMEZUU1hkRVVWbEtTMjlh
U1doMlkwNUJVVVZDUWxGQlJHZG5SVkJCUkVORFFWRnZRMmRuUlVKQlRDdG5DbWgxZVVzMEswZ3dSRGRXUVZWUUwwdEdWbFZRUkhRcllrTnhiMEZT
YkRNeVlteEhaV0pxYlZJeGRuZEdZalJYYlhkSVdEWmhOVFZMU0hWbmNGb3lUbThLVVVjNVQzcEhkMjVNWmpKeGRGSlBZbkpvTHk5bFkxbFBaRmxD
VjNWRWIySk1lbkYyYW05WllWZFlZVnB1TVhKVllYY3dSekZuYUhab1ZYUTVSbE56YlFwd1NHeHNXVzh3YzJOU1ZGRnhkMWRyUXpOaVprMXpkWFpY
Ukd0cGFsRlVjMnhzYTFBNVdXZENjMFJZYlZBNU4zaEdkR0pXT0ZodFVtOXpkREZhUTJOS0Nua3hiRUpSU0RGM1R6TlNNR2h4YkUxUGNGZG9ZVzlI
TUhObldqWldhR3g1YW5OVk0xZHFiWGhFVm1abE5tczNObmx0WmpCM1MxZGhVWHBoUjFGdlpGZ0tlQ3RQWTJSaWJHcDNlVXh4VWs1U2NWaFljRGRI
T1VOWVlXRkVPWGxYT1cxTlZ6UkRiVFI2VDFweU1VZG5SMDF3YkZSMGFWVTBiWFJSY1dKUmNYTjFWQXBaVVVRekwwaEVTVGg0TmpSMVZWQk5UbXRG
UTBGM1JVRkJZVTVEVFVWQmQwUm5XVVJXVWpCUVFWRklMMEpCVVVSQlowdHJUVUU0UjBFeFZXUkZkMFZDQ2k5M1VVWk5RVTFDUVdZNGQwaFJXVVJX
VWpCUFFrSlpSVVpJVWt0SVdHRXZTRFpPUlZaUFIzUjJSV00xVkRWM1UybHVkMGhOUVRCSFExTnhSMU5KWWpNS1JGRkZRa04zVlVGQk5FbENRVkZD
VDNKeWQzSllkbVo1U2xWUFIxaFZiMXB6ZEdoTFUxZ3ZhRGRtZVdGa01WSnNiV3RQYzBoMldtMDNORUpNZURGNVFncHhTREZMU1hjMlozQktWMUpH
UkVKc01GUlBPWFYxWWtvemNHMXRaMWx1WW5wUFRqRXJVVFJPV1dscWNsYzVXVEpwTXk5bWNDdEpTWEZFV0VwTFRYZHpDbFpsYjNWeWFHZFRTVkEx
U0RaSFJVMHZUalJLVjBJeU4xVTFXVWswVlZKQlNEWjFkRU14Vm5sblZVOUNUMHN3Tm5wQmVXbEJabWROVERseE0wVkZXRFVLVlZwVmVUQnVSRUV2
WVhGUFZqVkdZa3hMTmxWek1tWnRNREpXUW05SVZFNTRURXBWYlV4b2FFSTJWVkZQUkRKSlpGRTJiRWhhUXpNdk9HVk5PVTR3T0FvcmNWSklObXM1

UjI5dGRHbElUM2R5WkVwd1dqTklVa3huYVdoV1ZrUjZhbVIxWkRoMFVWUnRhVGwyUTBsWVFXeFJiek5vZWxabVJUbERhVTVEVEVSRENtWkZia2xV
WTA1Q2VXbEtRbU42TldaVVVuZFhWa1JKWlc5QlYzTkZabTVJY1ROSGVRb3RMUzB0TFVWT1JDQkRSVkpVU1VaSlEwRlVSUzB0TFMwdENnPT0= #
base64 encoded
status:
 eve-os-version: 6.12.2

 uuid: EC232B65-602A-F2A9-287B-5D95721116E6
 addresses:
 - address: 172.19.0.3
 type: InternalIP
 - address: k3d-k3s-default-server-0
 type: Hostname
 allocatable:
 cpu: "4"
 ephemeral-storage: "296591664715"
 hugepages-1Gi: "0"
 hugepages-2Mi: "0"
 memory: 16235544Ki
 pods: "110"
 capacity:
 cpu: "4"
 ephemeral-storage: 304884524Ki
 hugepages-1Gi: "0"
 hugepages-2Mi: "0"
 memory: 16235544Ki
 pods: "110"
 conditions:
 - lastHeartbeatTime: "2021-11-23T12:57:09Z"
 lastTransitionTime: "2021-10-10T10:33:38Z"
 message: kubelet is posting ready status
 reason: KubeletReady
 status: "True"
 type: Ready
 nodeInfo:
 architecture: amd64
 bootID: dc703fd4-543b-4801-96be-4d6d29afb41e
 containerRuntimeVersion: containerd://1.4.9
 kernelVersion: 5.10.1
 machineID: ""
 operatingSystem: eve
 osImage: eve
 systemUUID: EC232B65-602A-F2A9-287B-5D95721116E6

A Device can be created in one of two ways:

User: A user can create a Device resource by adding the resource. It can include a serial, onboard certificate and/or device certificate. When the
device attempts to connect to the controller, it is the controller’s onboarding policy that determines how it authenticates, using the device
certificate, onboard certificate, serial, CA on certificates, or any combination of the above.
Device: A device can self-register, automatically causing a Device resource to be created, if and only if the controller policy allows it. In this case,
either it must be one of:

Open to all self-registration.
Allows a device certificate signed by a known CA to self-register.
Allows an onboard certificate signed by a known CA to self-register.
Allows a known onboard certificate to self-register.

The resources that enable the following are:

OnboardCertificate
OnboardCA
DeviceCA

These are all namespaced.

Note that if a user desires to allow a particular onboard certificate and serial combination, and the controller supports it, they simply create the Device
resource, providing the onboard certificate and serial as part of the spec.

Onboard Certificate

Any device presenting this onboard certificate can self-register.

apiVersion: "eve.lfedge.org/v1beta1"
kind: OnboardCertificate
metadata:
 name: onboard-cert-25
 namespace: enterprise1
spec:
 certificate:
TFMwdExTMUNSVWRKVGlCRFJWSlVTVVpKUTBGVVJTMHRMUzB0Q2sxSlNVTTFla05EUVdNclowRjNTVUpCWjBsQ1FWUkJUa0puYTNGb2EybEhPWGN3
UWtGUmMwWkJSRUZXVFZKTmQwVlJXVVJXVVZGRVJYZHdjbVJYU213S1kyMDFiR1JIVm5wTlFqUllSRlJKZVUxRWEzZE5WRUV6VGtSTmVrOVdiMWhF
VkUxNVRVUm5lVTlVUVROT1JFMTZUMVp2ZDBaVVJWUk5Ra1ZIUVRGVlJRcEJlRTFMWVROV2FWcFlTblZhV0ZKc1kzcERRMEZUU1hkRVVWbEtTMjlh
U1doMlkwNUJVVVZDUWxGQlJHZG5SVkJCUkVORFFWRnZRMmRuUlVKQlRDdG5DbWgxZVVzMEswZ3dSRGRXUVZWUUwwdEdWbFZRUkhRcllrTnhiMEZT
YkRNeVlteEhaV0pxYlZJeGRuZEdZalJYYlhkSVdEWmhOVFZMU0hWbmNGb3lUbThLVVVjNVQzcEhkMjVNWmpKeGRGSlBZbkpvTHk5bFkxbFBaRmxD
VjNWRWIySk1lbkYyYW05WllWZFlZVnB1TVhKVllYY3dSekZuYUhab1ZYUTVSbE56YlFwd1NHeHNXVzh3YzJOU1ZGRnhkMWRyUXpOaVprMXpkWFpY
Ukd0cGFsRlVjMnhzYTFBNVdXZENjMFJZYlZBNU4zaEdkR0pXT0ZodFVtOXpkREZhUTJOS0Nua3hiRUpSU0RGM1R6TlNNR2h4YkUxUGNGZG9ZVzlI
TUhObldqWldhR3g1YW5OVk0xZHFiWGhFVm1abE5tczNObmx0WmpCM1MxZGhVWHBoUjFGdlpGZ0tlQ3RQWTJSaWJHcDNlVXh4VWs1U2NWaFljRGRI
T1VOWVlXRkVPWGxYT1cxTlZ6UkRiVFI2VDFweU1VZG5SMDF3YkZSMGFWVTBiWFJSY1dKUmNYTjFWQXBaVVVRekwwaEVTVGg0TmpSMVZWQk5UbXRG
UTBGM1JVRkJZVTVEVFVWQmQwUm5XVVJXVWpCUVFWRklMMEpCVVVSQlowdHJUVUU0UjBFeFZXUkZkMFZDQ2k5M1VVWk5RVTFDUVdZNGQwaFJXVVJX
VWpCUFFrSlpSVVpJVWt0SVdHRXZTRFpPUlZaUFIzUjJSV00xVkRWM1UybHVkMGhOUVRCSFExTnhSMU5KWWpNS1JGRkZRa04zVlVGQk5FbENRVkZD
VDNKeWQzSllkbVo1U2xWUFIxaFZiMXB6ZEdoTFUxZ3ZhRGRtZVdGa01WSnNiV3RQYzBoMldtMDNORUpNZURGNVFncHhTREZMU1hjMlozQktWMUpH
UkVKc01GUlBPWFYxWWtvemNHMXRaMWx1WW5wUFRqRXJVVFJPV1dscWNsYzVXVEpwTXk5bWNDdEpTWEZFV0VwTFRYZHpDbFpsYjNWeWFHZFRTVkEx
U0RaSFJVMHZUalJLVjBJeU4xVTFXVWswVlZKQlNEWjFkRU14Vm5sblZVOUNUMHN3Tm5wQmVXbEJabWROVERseE0wVkZXRFVLVlZwVmVUQnVSRUV2
WVhGUFZqVkdZa3hMTmxWek1tWnRNREpXUW05SVZFNTRURXBWYlV4b2FFSTJWVkZQUkRKSlpGRTJiRWhhUXpNdk9HVk5PVTR3T0FvcmNWSklObXM1
UjI5dGRHbElUM2R5WkVwd1dqTklVa3huYVdoV1ZrUjZhbVIxWkRoMFVWUnRhVGwyUTBsWVFXeFJiek5vZWxabVJUbERhVTVEVEVSRENtWkZia2xV
WTA1Q2VXbEtRbU42TldaVVVuZFhWa1JKWlc5QlYzTkZabTVJY1ROSGVRb3RMUzB0TFVWT1JDQkRSVkpVU1VaSlEwRlVSUzB0TFMwdENnPT0= #
base64 encoded

Onboard CA

Any device presenting a certificate signed by this CA can self-register.

apiVersion: "eve.lfedge.org/v1beta1"
kind: OnboardCertificateAuthority
metadata:
 name: onboard-ceriticate-authority-13
 namespace: enterprise1
spec:
 certificate:
TFMwdExTMUNSVWRKVGlCRFJWSlVTVVpKUTBGVVJTMHRMUzB0Q2sxSlNVTTFla05EUVdNclowRjNTVUpCWjBsQ1FWUkJUa0puYTNGb2EybEhPWGN3
UWtGUmMwWkJSRUZXVFZKTmQwVlJXVVJXVVZGRVJYZHdjbVJYU213S1kyMDFiR1JIVm5wTlFqUllSRlJKZVUxRWEzZE5WRUV6VGtSTmVrOVdiMWhF
VkUxNVRVUm5lVTlVUVROT1JFMTZUMVp2ZDBaVVJWUk5Ra1ZIUVRGVlJRcEJlRTFMWVROV2FWcFlTblZhV0ZKc1kzcERRMEZUU1hkRVVWbEtTMjlh
U1doMlkwNUJVVVZDUWxGQlJHZG5SVkJCUkVORFFWRnZRMmRuUlVKQlRDdG5DbWgxZVVzMEswZ3dSRGRXUVZWUUwwdEdWbFZRUkhRcllrTnhiMEZT
YkRNeVlteEhaV0pxYlZJeGRuZEdZalJYYlhkSVdEWmhOVFZMU0hWbmNGb3lUbThLVVVjNVQzcEhkMjVNWmpKeGRGSlBZbkpvTHk5bFkxbFBaRmxD
VjNWRWIySk1lbkYyYW05WllWZFlZVnB1TVhKVllYY3dSekZuYUhab1ZYUTVSbE56YlFwd1NHeHNXVzh3YzJOU1ZGRnhkMWRyUXpOaVprMXpkWFpY
Ukd0cGFsRlVjMnhzYTFBNVdXZENjMFJZYlZBNU4zaEdkR0pXT0ZodFVtOXpkREZhUTJOS0Nua3hiRUpSU0RGM1R6TlNNR2h4YkUxUGNGZG9ZVzlI
TUhObldqWldhR3g1YW5OVk0xZHFiWGhFVm1abE5tczNObmx0WmpCM1MxZGhVWHBoUjFGdlpGZ0tlQ3RQWTJSaWJHcDNlVXh4VWs1U2NWaFljRGRI
T1VOWVlXRkVPWGxYT1cxTlZ6UkRiVFI2VDFweU1VZG5SMDF3YkZSMGFWVTBiWFJSY1dKUmNYTjFWQXBaVVVRekwwaEVTVGg0TmpSMVZWQk5UbXRG
UTBGM1JVRkJZVTVEVFVWQmQwUm5XVVJXVWpCUVFWRklMMEpCVVVSQlowdHJUVUU0UjBFeFZXUkZkMFZDQ2k5M1VVWk5RVTFDUVdZNGQwaFJXVVJX
VWpCUFFrSlpSVVpJVWt0SVdHRXZTRFpPUlZaUFIzUjJSV00xVkRWM1UybHVkMGhOUVRCSFExTnhSMU5KWWpNS1JGRkZRa04zVlVGQk5FbENRVkZD
VDNKeWQzSllkbVo1U2xWUFIxaFZiMXB6ZEdoTFUxZ3ZhRGRtZVdGa01WSnNiV3RQYzBoMldtMDNORUpNZURGNVFncHhTREZMU1hjMlozQktWMUpH
UkVKc01GUlBPWFYxWWtvemNHMXRaMWx1WW5wUFRqRXJVVFJPV1dscWNsYzVXVEpwTXk5bWNDdEpTWEZFV0VwTFRYZHpDbFpsYjNWeWFHZFRTVkEx
U0RaSFJVMHZUalJLVjBJeU4xVTFXVWswVlZKQlNEWjFkRU14Vm5sblZVOUNUMHN3Tm5wQmVXbEJabWROVERseE0wVkZXRFVLVlZwVmVUQnVSRUV2
WVhGUFZqVkdZa3hMTmxWek1tWnRNREpXUW05SVZFNTRURXBWYlV4b2FFSTJWVkZQUkRKSlpGRTJiRWhhUXpNdk9HVk5PVTR3T0FvcmNWSklObXM1
UjI5dGRHbElUM2R5WkVwd1dqTklVa3huYVdoV1ZrUjZhbVIxWkRoMFVWUnRhVGwyUTBsWVFXeFJiek5vZWxabVJUbERhVTVEVEVSRENtWkZia2xV
WTA1Q2VXbEtRbU42TldaVVVuZFhWa1JKWlc5QlYzTkZabTVJY1ROSGVRb3RMUzB0TFVWT1JDQkRSVkpVU1VaSlEwRlVSUzB0TFMwdENnPT0= #
base64 encoded

Device CA

Any device presenting a device certificate signed by this CA can self-register.

apiVersion: "eve.lfedge.org/v1beta1"
kind: DeviceCertificateAuthority
metadata:
 name: device-certificate-authority-16
 namespace: enterprise1
spec:
 certificate:
TFMwdExTMUNSVWRKVGlCRFJWSlVTVVpKUTBGVVJTMHRMUzB0Q2sxSlNVTTFla05EUVdNclowRjNTVUpCWjBsQ1FWUkJUa0puYTNGb2EybEhPWGN3
UWtGUmMwWkJSRUZXVFZKTmQwVlJXVVJXVVZGRVJYZHdjbVJYU213S1kyMDFiR1JIVm5wTlFqUllSRlJKZVUxRWEzZE5WRUV6VGtSTmVrOVdiMWhF
VkUxNVRVUm5lVTlVUVROT1JFMTZUMVp2ZDBaVVJWUk5Ra1ZIUVRGVlJRcEJlRTFMWVROV2FWcFlTblZhV0ZKc1kzcERRMEZUU1hkRVVWbEtTMjlh
U1doMlkwNUJVVVZDUWxGQlJHZG5SVkJCUkVORFFWRnZRMmRuUlVKQlRDdG5DbWgxZVVzMEswZ3dSRGRXUVZWUUwwdEdWbFZRUkhRcllrTnhiMEZT
YkRNeVlteEhaV0pxYlZJeGRuZEdZalJYYlhkSVdEWmhOVFZMU0hWbmNGb3lUbThLVVVjNVQzcEhkMjVNWmpKeGRGSlBZbkpvTHk5bFkxbFBaRmxD
VjNWRWIySk1lbkYyYW05WllWZFlZVnB1TVhKVllYY3dSekZuYUhab1ZYUTVSbE56YlFwd1NHeHNXVzh3YzJOU1ZGRnhkMWRyUXpOaVprMXpkWFpY
Ukd0cGFsRlVjMnhzYTFBNVdXZENjMFJZYlZBNU4zaEdkR0pXT0ZodFVtOXpkREZhUTJOS0Nua3hiRUpSU0RGM1R6TlNNR2h4YkUxUGNGZG9ZVzlI
TUhObldqWldhR3g1YW5OVk0xZHFiWGhFVm1abE5tczNObmx0WmpCM1MxZGhVWHBoUjFGdlpGZ0tlQ3RQWTJSaWJHcDNlVXh4VWs1U2NWaFljRGRI
T1VOWVlXRkVPWGxYT1cxTlZ6UkRiVFI2VDFweU1VZG5SMDF3YkZSMGFWVTBiWFJSY1dKUmNYTjFWQXBaVVVRekwwaEVTVGg0TmpSMVZWQk5UbXRG
UTBGM1JVRkJZVTVEVFVWQmQwUm5XVVJXVWpCUVFWRklMMEpCVVVSQlowdHJUVUU0UjBFeFZXUkZkMFZDQ2k5M1VVWk5RVTFDUVdZNGQwaFJXVVJX
VWpCUFFrSlpSVVpJVWt0SVdHRXZTRFpPUlZaUFIzUjJSV00xVkRWM1UybHVkMGhOUVRCSFExTnhSMU5KWWpNS1JGRkZRa04zVlVGQk5FbENRVkZD
VDNKeWQzSllkbVo1U2xWUFIxaFZiMXB6ZEdoTFUxZ3ZhRGRtZVdGa01WSnNiV3RQYzBoMldtMDNORUpNZURGNVFncHhTREZMU1hjMlozQktWMUpH
UkVKc01GUlBPWFYxWWtvemNHMXRaMWx1WW5wUFRqRXJVVFJPV1dscWNsYzVXVEpwTXk5bWNDdEpTWEZFV0VwTFRYZHpDbFpsYjNWeWFHZFRTVkEx
U0RaSFJVMHZUalJLVjBJeU4xVTFXVWswVlZKQlNEWjFkRU14Vm5sblZVOUNUMHN3Tm5wQmVXbEJabWROVERseE0wVkZXRFVLVlZwVmVUQnVSRUV2
WVhGUFZqVkdZa3hMTmxWek1tWnRNREpXUW05SVZFNTRURXBWYlV4b2FFSTJWVkZQUkRKSlpGRTJiRWhhUXpNdk9HVk5PVTR3T0FvcmNWSklObXM1
UjI5dGRHbElUM2R5WkVwd1dqTklVa3huYVdoV1ZrUjZhbVIxWkRoMFVWUnRhVGwyUTBsWVFXeFJiek5vZWxabVJUbERhVTVEVEVSRENtWkZia2xV
WTA1Q2VXbEtRbU42TldaVVVuZFhWa1JKWlc5QlYzTkZabTVJY1ROSGVRb3RMUzB0TFVWT1JDQkRSVkpVU1VaSlEwRlVSUzB0TFMwdENnPT0= #
base64 encoded

Networks

Node Network

Creating an EVE-style device network requires the usage of two CRDs, one for configuration information, which can be reused, and one for the on-device
network itself.

Note that the CRD NetworkConfig (below) is very similar in principle to the Kubernetes NetworkAttachmentDefinition.

Network configuration:

apiVersion: "eve.lfedge.org/v1beta1"
kind: NetworkConfig
metadata:
 name: default-ipv4
 namespace: enterprise1
spec:
 ip: dhcp
 proxies:
 - https://10.100.100.1:8888

Network instantiation:

https://github.com/k8snetworkplumbingwg/multi-net-spec

apiVersion: "eve.lfedge.org/v1beta1"
kind: DeviceNetwork
metadata:
 name: default-ipv4
 namespace: enterprise1
spec:
 networkConfig: default-ipv4

 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: name
 operator: In
 values:
 - lab1-nuc
 - lab2-nuc

Workload Network

We leverage the cncf standard annotations on the workload to indicate desired networks on the actual workload.

annotations:
 k8s.v1.cni.cncf.io/networks: default-ipv4,macvlan2 # must exist on edge device

Storage

The EVE semantics for storage are as follows.

Every AppInstanceConfig needs one or more Volume, which in turn are based either on a blank volume or a ContentTree. When creating an Edge
App Instance, these are converted either into disk images which are attached to VMs or mount points attached to containers. The first provided Volume is
the bootable one for VMs or container image for containers. Subsequent Volumes may be read-only or read-write.

AppInstanceConfig
Volume1

ContentTree
Volume2

ContentTree
Volume3

Blank
…

Kubernetes already supports the basic structures - multiple volumes, custom storage volumes and custom storage drivers - with the StorageClass
resource. We create for blank and each source:StorageClass

eve-blank: for a blank disk or mountpoint
eve-quay: from container image on quay.io
eve-docker: from container image on docker hub
etc.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: eve-quay
 namespace: enterprise1
provisioner: eve
parameters:
 type: container # must be supported type: container, http, ftp, etc.
 URL: https://quay.io
 credentialsSecret: quay-creds # Secret enterprise1/quay-creds

http://quay.io

for blank:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: eve-blank
provisioner: eve
parameters:
 type: blank

Credentials secrets, if needed, are affiliated with the StorageClass as credentialsRef.

We define Custom Resources for Image, and then use admissions controllers to validate that the requested resources exist when deploying a Pod that
references them.

apiVersion: "eve.lfedge.org/v1beta1"
kind: Image
metadata:
 name: golden-ubuntu-2004
 namespace: enterprise1
spec:
 ref: corp1/ubuntu:20.04
 storageClass: eve-quay # must match the name of a StorageClass

 type: user # can be any field; a controller may define special names; eve-os is reserved

The Image name is then used in a PersistentVolumeClaim. See below.

Workloads

We define a workload called Application for an application to run on an Edge Device. It references all of the necessary elements. Note that it is called
an Application, and not an ApplicationInstance. An instance is something that occurs when deployed on an Edge Device. The Application is
the Kubernetes resource describing the intent to deploy.

We reuse standard constructs from native Kubernetes workloads, i.e. pods, as much as possible:

To determine the node(s) to which an Application is to deploy, we use the standard Kubernetes node affiliation constructs for pods,
specifically nodeAffinity and nodeSelector.
To determine the DeviceNetwork(s) to which the Application should attach, we use the standard networks annotation k8s.v1.cni.cncf.io
/networks.
For storage volumes:

For the boot image, we use the image field, which must match a named Image.
For other volumes, we use Kubernetes PersistentVolumeClaim.

Support for multiple containers enables future packaging of multiple workloads together.

Boot image

The image field refers to the name of a defined Image.

Additional Volumes

For all additional storage volumes, we use Kubernetes Volume resources, specifically .PersistentVolumeClaim

For example:

Golden filesystem image stored on FTP site, mounted as a filesystem. Defined using the StorageClass eve-ftp.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: fsclaim
spec:
 accessModes:
 - ReadWriteOnce # can be ReadWriteOnce, ReadOnlyMany, etc.
 volumeMode: Filesystem # can be Filesystem or Block
 resources:
 requests:
 storage: 8Gi # this is for the size
 storageClassName: eve-ftp
 dataSourceRef:
 group: eve.lfedge.org/v1beta1
 kind: image
 name: golden-ubuntu-2004

Golden VM image stored on FTP site, mounted as a block device. Defined using the StorageClass eve-ftp.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: ubuntuclaim
spec:
 accessModes:
 - ReadWriteOnce # can be ReadWriteOnce, ReadOnlyMany, etc.
 volumeMode: Block # can be Filesystem or Block
 resources:
 requests:
 storage: 8Gi # this is for the size
 storageClassName: eve-image
 dataSourceRef:
 group: eve.lfedge.org/v1beta1
 kind: image
 name: golden-ubuntu-2004

Blank disk volume.

kind: PersistentVolumeClaim
metadata:
 name: blankdisk
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem # can be Filesystem or Block
 resources:
 requests:
 storage: 8Gi # this is for the size
 storageClassName: eve-blank

Status

The state of an , as reported by the controller, is set on the Application ApplicationStatus. For example:

apiVersion: eve.lfedge.org/v1beta1
kind: Application
metadata:
 name: app-ubuntu
 namespace: enterprise1
 annotations:
 k8s.v1.cni.cncf.io/networks: wlan-local,vpn-corp # must be known
spec:
 nodeSelector: # reuse this because it is native to many resources
 name: edge-node-01
...
status:
 key: value
 key: value

The field is similar to the Kubernetes ApplicationStatus PodStatus, albeit not identical. The fields are as follows.

state: current state of the Application.
statuses: array of historical states of the application. Each state includes two fields:

state: the state when this status occurred.
timestamp: the timestamp when this status occurred.

The states of the application are the ones currently supported by the EVE API. E.g. BOOTING, RUNNING, STARTED.

Complete Example

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#PodStatus
https://github.com/lf-edge/eve/blob/fbb85e40f957b43f3d047a43250f213b2b50e68f/api/proto/info/info.proto#L171-L219

apiVersion: eve.lfedge.org/v1beta1
kind: Application
metadata:
 name: app-ubuntu
 namespace: enterprise1
 annotations:
 k8s.v1.cni.cncf.io/networks: wlan-local,vpn-corp # must be known
spec:
 nodeSelector: # reuse this because it is native to many resources
 name: edge-node-01
 containers:
 - name: frontend
 image: golden-ubuntu-2004 # must be an Image resource
 resources:
 requests:
 cpu: 1.0
 memory: 256M
 storage: 8G
 volumeMounts:
 - mountPath: "/var/www/html"
 name: mypd
 volumeDevices:
 - devicePath: "/dev/sda2"
 name: ubuntu
 - devicePath: "/dev/sda3"
 name: raw
 volumes:
 - name: pd
 persistentVolumeClaim:
 claimName: fsclaim
 - name: ubuntu
 persistentVolumeClaim:
 claimName: ubuntuclaim
 - name: raw
 ephemeral:
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 resources:
 requests:
 storage: 8Gi
 storageClassName: blankdisk

Scheduling

We define higher-level scheduling constraints, specifically ApplicationDeployment, ApplicationDaemonSet, ApplicationStatefulSet. These
are optional; a controller MAY implement them, but is not required to do so.

These follow the same semantics as normal Pod-scheduling Deployment, DaemonSet and ApplicationSet, except that the spec.template.spec
references an Application rather than a Pod.

BaseOS

Setting the baseOS version on a device is performed by changing the spec field eve-os-version. Note that the status field eve-os-version reports
what version actually is installed and running on the device, while the spec field eve-os-version is the desired version.

If the spec field eve-os-version is blank, then there is no specific request; it simply is whatever was installed on the device. The field should be
changed only when requesting a change of the eve-os version on the device. The status field is to be updated when the update is complete.

Controllers may have policies that require an eve-os image be registered on the controller, and possibly in the specific namespace, before allowing it to be
applied to a device. This is a policy question for the controller, and is not covered by this specification.

Appendix A - Native Resources

Edge Device

1.
a.
b.
c.

2.
3.

The concepts of a Kubernetes node and an EVE edge device are very similar, with support for various properties. The flows of adding and managing them
differ.

EVE

EVE’s API for joining a controller uses a combination of three distinct elements from the device:

Onboard certificate
Serial
Device certificate

EVE’s API does not define how the controller will use those, and in what combination. Nor does it define if a certificate will be validated by advance
knowledge of the certificate itself, or by acceptance of the CA that signed the cert, if any.

The controller can use any combination of the above it desires to authenticate and then register the device.

In practice, most controllers provide one or more of the following:

Device pre-allocated and device certificate itself known in advance.
Device pre-allocated and onboard certificate itself known in advance.
Device pre-allocated and combination of onboard certificate and serial known in advance.
Device not pre-allocated; onboard certificate known and accepted for device registration.
Device not pre-allocated; onboard certificate’s signer known and accepted for device registration.

The process is:

User: Create a new device, with some combination, depending on controller, of:
Device certificate, only available after device boots with physical access
Onboarding certificate
Unique serial

Device: Connect to controller, identify using the above
Device now is onboarded

Kubernetes

Any node that can connect to the control plane and prove it has a valid identity is accepted as a worker node. This proof is one of:

A node certificate signed by an acceptable CA - this CA is valid for all nodes, not just for one node.
A pre-shared secret token - this token is valid for any node, not just for one node. Kubernetes uses that token to generate a new node certificate
for the node.

Note that these two methods of joining - an existing “node certificate” and a token - are similar in concept to the EVE API “device certificate” and “onboard
certificate”. However, their usage is quite different.

In Kubernetes one normally does not create a node via the API; the node exists by virtue of its joining a cluster. However, it is possible to create one via
the API. It is unclear how the node, upon joining, will reconcile with the existing node resource.

Kubernetes Node Certificate EVE Device Certificate

Validation Signed by valid CA Actual certificate in controller

Kubernetes Token EVE Onboard Certificate

Validation Shared secret Actual certificate in controller

Usage Generate node certificate Accept presented device certificate

All additional features and properties of the node that are not directly related to the cluster itself, including taints and tolerations, are handled via metadata,
specifically labels and annotations. Since these are semi-arbitrary key-value pairs, anything can be placed here.

We use annotations to determine whether or not to onboard the Node, i.e. its activation status.

When the Edge Device onboards, changed the to Ready.NodeStatus

Note that the OS, architecture and other descriptive elements of the Node are natively part of NodeStatus.NodeInfo.

The following is a sample. Note that the status section normally is returned by the device, rather than set. However, it can be set via a client.

apiVersion: v1
kind: Node
metadata:
 annotations:
 eve.lfedge.org/node-type: virtual
 eve.lfedge.org/eve-version: 6.12.2
 eve.lfedge.org/location: "texas/usa"
 eve.lfedge.org/activate: true
 eve.lfedge.org/network-eth0: default-ipv4
 eve.lfedge.org/network-eth1: management-only
 labels:
 beta.kubernetes.io/arch: amd64
 beta.kubernetes.io/instance-type: eve
 beta.kubernetes.io/os: linux
 kubernetes.io/arch: amd64
 kubernetes.io/hostname: eve-device.lab1
 kubernetes.io/os: eve
 node.kubernetes.io/instance-type: eve
 name: eve-device.lab1
spec:
 providerID: eve://eve-device.lab1
status:
 addresses:
 - address: 172.19.0.3
 type: InternalIP
 - address: k3d-k3s-default-server-0
 type: Hostname
 allocatable:
 cpu: "4"
 ephemeral-storage: "296591664715"
 hugepages-1Gi: "0"
 hugepages-2Mi: "0"
 memory: 16235544Ki
 pods: "110"
 capacity:
 cpu: "4"
 ephemeral-storage: 304884524Ki
 hugepages-1Gi: "0"
 hugepages-2Mi: "0"
 memory: 16235544Ki
 pods: "110"
 conditions:
 - lastHeartbeatTime: "2021-11-23T12:57:09Z"
 lastTransitionTime: "2021-10-10T10:33:38Z"
 message: kubelet is posting ready status
 reason: KubeletReady
 status: "True"
 type: Ready
 nodeInfo:
 architecture: amd64
 bootID: dc703fd4-543b-4801-96be-4d6d29afb41e
 containerRuntimeVersion: containerd://1.4.9
 kernelVersion: 5.10.1
 machineID: ""
 operatingSystem: eve
 osImage: eve
 systemUUID: EC232B65-602A-F2A9-287B-5D95721116E6

We use taints to prevent any normal pods from being deployed to the node. Only targeted EVE pods which have the correct tolerations are deployed to the
node.

Networks

1.
2.

a.
b.
c.

EVE has 2 network constructs that simply do not exist in Kubernetes:

device network: one or more network definitions on each Edge Device
workload network: the device network to which a workload should connect

For Kubernetes, a network only comes into existence when a workload pod is created. The kubelet (responsible for running the pod):

Creates the container, including network namespace
Calls CNI, passing it the container network namespace, which:

Creates the network interface in the container network namespace
Plumbs the network interface to whichever network it desires
Allocates and attaches an IP

Node Network

The network for a node is completely out of Kubernetes scope. How the node connects to networks, what it uses its physical NICs for, configuration of
them - DHCP, DNS, WiFi credentials, etc. - is something that is dealt with prior to onboarding the node and unrelated to it.

In EVE, each NIC on an Edge Device is given a specific Network definition via the EdgeDevConfig config with which to work. These must be defined,
otherwise the NIC will be considered unmanaged and not used.

Thus, the node network, or device network, in the Native Resources option is identical to and uses the same CRDs as the official design CRD option.

Workload Network

In Kubernetes, each workload container natively gets two virtual NICs, eth0 and lo. While is connected to loopback, is connected via CNI to lo eth0
whichever network is the default on that host.

Once it is connected, it is assumed to be able to communicate with all other workloads and hosts, as well as the larger outside network itself, subject to
network policy rules. The idea of multiple networks to which some workloads are connected and some are not, simply does not exist.

As a result, in Kubernetes, there is no Network object, nor is there native support for multiple network implementations. By extension, workloads have no
native property for “network to join”, because all containers by default join just the loopback lo and eth0 via CNI.

However, CNI is capable of doing almost anything it wants, including adding multiple interfaces connected to the same networks, connecting workloads to
multiple networks, or even to no networks. On the basis of this, there are standards for defining different networks and implementations of CNI, notably the
official reference implementation multus, that know how to use those definitions. Note that these are not built into Kubernetes, but rather take advantage of
CRDs and CNI.

To declare the usage of networks, there are standard CNCF annotations to be applied to the workload that indicate the desired networks:

apiVersion: v1
kind: Pod
metadata:
 name: mypod
 annotations:
 k8s.v1.cni.cncf.io/networks: default-ipv4,macvlan2 # must exist on edge device

We leverage the cncf standard annotations to declare desired networks in EVE as well. However, the implementation is specific to the endpoint. In the
EVE case, we use the existing network structures.

Network ACLs

Within the single flat Kubernetes workload network, there is optional access control using NetworkPolicy.

If no is declared, then all workloads (pods) have unfettered access to all other workloads.NetworkPolicy
If even a single is declared in a namespace, then access to any workloads in that namespace is denied unless explicitly NetworkPolicy
allowed by a .NetworkPolicy

These policies can restrict ingress, egress or both. They apply to workloads based on normal selectors, usually labels. They can allow based on the
remote end’s IP address/range/cidr, port, namespace, label or any combination thereof.

 always is "default deny". Once applied in a namespace, ingress and egress will be allowed only if expressly allowed in a NetworkPolicy NetworkPolicy
. There can be as many applied as desired.NetworkPolicy

We do not use as part of declaring network access for EVE. In the future, we may consider controlling EVE network ACLs with NetworkPolicy Network
.Policy

https://github.com/k8snetworkplumbingwg/multus-cni
https://kubernetes.io/docs/concepts/services-networking/network-policies/

Storage

Kubernetes supports independent storage as the resources Volume and PersistentVolume. Each Volume can be one of several defined types, but
generally is one of two categories:

: created with the workload on the node and eliminated when the workload goes away.Ephemeral
: backed by some more permanent form of storage, either network or local disk.Persistent

The key difference is not network vs local, but persistence beyond the life of a single workload.

EVE does not currently support network-mounted volumes. EVE currently preserves all volumes upon termination of a workload, until explicitly deleted.

The resource structure is identical to that described in CRDs.

Workloads

EVE workloads, defined by AppInstanceConfig, map to Kubernetes Pods. Kubernetes also has higher order scheduling constructs - , Deployment Dae
, - which we will use as well, but only as optionally supported by the controller.monSet StatefulSet

Kubernetes Pods are not inherently attached to a specific Node. There are constructs in the Pod that can require or prefer it to be on a certain node or
class of nodes, but it is not the default or native way of scheduling.

The specific uniquenesses of Edge Apps are handled using Kubernetes constructs as follows:

Edge Device selection: nodeSelector
Networking: the standard networks annotation k8s.v1.cni.cncf.io/networks is used to list the desired named networks available on the
node. The network is checked for existence by an admissions controller.
Storage:

For the boot image, we use the image field, which must match a named Image.
For other volumes, we use Kubernetes PersistentVolumeClaim.

Storage is defined further below.

Boot image

The image field of the Pod spec normally refers to a special URL indicating the registry, repository name, and identifier - tag and/or hash - of an OCI-spec
compliant container image.

We overload the image field of the podspec by providing a special URL that indicates the image it is being taken from. Valid would be:

quay.io/etcd/etcd:3.2.1 - currently acceptable normal OCI image
<image-name> - reference a local image

In order to indicate that the image field references an Image to be referenced rather than a normal OCI image to be pulled from a registry, we set an
annotation on the Pod:

annotations:
 eve.lfedge.org/image-source: local

These are identical to the CRD image solution, except that the annotation is necessary only when using native Kubernetes pod resources.

Additional Volumes

For all additional storage volumes, we use Kubernetes resources, specifically , in the same manner as the CRD Volume PersistentVolumeClaim
solution.

Examples:

Golden filesystem image stored on FTP site, mounted as a filesystem. Defined using the StorageClass eve-ftp.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: fsclaim
spec:
 accessModes:
 - ReadWriteOnce # can be ReadWriteOnce, ReadOnlyMany, etc.
 volumeMode: Filesystem # can be Filesystem or Block
 resources:
 requests:
 storage: 8Gi # this is for the size
 storageClassName: eve-ftp
 dataSourceRef:
 group: eve.lfedge.org/v1beta1
 kind: image
 name: golden-ubuntu-2004

Golden VM image stored on FTP site, mounted as a block device. Defined using the StorageClass eve-ftp.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: ubuntuclaim
spec:
 accessModes:
 - ReadWriteOnce # can be ReadWriteOnce, ReadOnlyMany, etc.
 volumeMode: Block # can be Filesystem or Block
 resources:
 requests:
 storage: 8Gi # this is for the size
 storageClassName: eve-image
 dataSourceRef:
 group: eve.lfedge.org/v1beta1
 kind: image
 name: golden-ubuntu-2004

Blank disk volume.

kind: PersistentVolumeClaim
metadata:
 name: blankdisk
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem # can be Filesystem or Block
 resources:
 requests:
 storage: 8Gi # this is for the size
 storageClassName: eve-blank

Complete Example

apiVersion: v1
kind: Pod
metadata:
 name: mypod
 namespace: enterprise1
 annotations:
 k8s.v1.cni.cncf.io/networks: wlan-local,vpn-corp # must be known
 eve.lfedge.org/image-source: local
spec:
 containers:
 - name: myfrontend
 image: golden-ubuntu-2004 # must be an Image resource
 nodeSelector:
 name: edge-node-01
 volumeMounts:
 - mountPath: "/var/www/html"
 name: mypd
 volumeDevices:
 - devicePath: "/dev/sda2"
 name: ubuntu
 - devicePath: "/dev/sda3"
 name: raw
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: fsclaim
 - name: ubuntu
 persistentVolumeClaim:
 claimName: ubuntuclaim
 - name: raw
 ephemeral:
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 resources:
 requests:
 storage: 8Gi
 storageClassName: blankdisk

Scheduling

Since the workload is a native Kubernetes resource Pod, we use the higher-level scheduling resources to schedule multiple: Deployment, StatefulSet, Dae
monSet. These are used in the normal fashion, with the usual node affinities, specifically nodeSelector and nodeAffinity, as described here.

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

	Kubernetes-compatible API for EVE Controller

