Kubernetes-compatible API for EVE Controller

This document reviews the standard functionality of an EVE controller, and how those might be implemented using Kubernetes. It is not tied to a particular
implementation of EVE controller, and as such may not cover all use cases. However, it should be extensible enough for any particular controller to adopt
this and then add the specific needs.

As of this writing, there are two known implementations of controllers: Open Source Adam, and commercial Zedcloud by ZEDEDA.

Adam is a reference OSS EVE controller. It has a very limited, but simple, custom REST API, described here as its adm nHandl er . Specifically, it
enables:

Adding, deleting, updating and reading onboard certificates

Adding, deleting, updating and reading an edge device

Getting and setting global options

Getting and setting device specific options

Reading a device’s logs, information, metrics and certificates

Reading and writing a device’s configuration as a single json blob, per the EVE API.

It is important to note that Adam provides no granular control over a device; it only knows how to return the entire device config as json, or receive an
entirely new device config as json.

Zedcloud is an enterprise-class commercial solution, offered as a fully-managed SaasS solution, along with device support and professional services, from
ZEDEDA. In addition to management services, and all of the abilities that Adam provides, ZEDEDA offers:

® Multiple forms of authentication/authorization as well as enterprise SSO

® An advanced Ul

® Reading and writing individual components of a device’s configuration, as well as validations, which, in turn, are composed by Zedcloud into a
device’s configuration.

® Libraries of components, applications and images

® Predefined templates

® Many more features

The goal of this document is to provide an API design that:

Is compatible with Kubernetes.

Supports all of current Adam functionality.

Enables getting and setting of individual elements within the EVE API, thus enabling Adam to combine them into a full json device configuration.
Is extensible, so that commercial controllers, such as Zedcloud, could use the API as a basis for their own APl which is 100% compatible with this
API, yet supports their rich additional features.

On the basis of the above:

1. Anything that is in Adam or an element of the EVE API will be covered here.
2. Anything that is not in the above will not be covered here.
3. The method of extensions will be covered here.

Note that elements of the EVE API that are intended entirely for control between the controller and device, will not have a Kubernetes-compatible
component, as those are not intended to be exposed to the end-user.

Why would we want to standardize on a Kubernetes-compatible API? The Kubernetes API comes with several advantages:

® |t provides a standardized interface.

® |t enables controller designers to leverage existing reliable CLI and SDK tooling with which large numbers of technologists and IT departments
are familiar.

® |t allows controller designers to replace entire parts of their code with an off-the-shelf component that is mature, reliable, production-tested, and
capable.

® |t enables controller providers to plug into almost any Kubernetes ecosystem component.

It eases locating skilled staff and shortens their learning curve.

Globally available CLI and clients in multiple languages, supported by a large distributed team of people, with a very large existing installed base
Ability of customers to define all EVE resources as code, in human-readable template files, and stored optionally in version control

Easy integration with any system that works with Kubernetes, e.g. Cl systems or monitoring systems

Freely available server-side tooling that supports REST endpoints, validation, authentication, distributed highly-available processing, eventual
reconciliation, role-based access control based on API paths, including individual resource-level control; all standardized and used in production,
supported by a large number of engineers globally.

Custom Resources vs Native Kubernetes
Kubernetes is an APl and a system for declaring workloads and scheduling them on nodes.

EVE includes an API and a system for declaring workloads and scheduling them on nodes.

https://github.com/lf-edge/adam/
https://zededa.com/product/
https://github.com/lf-edge/adam/blob/3c039a7bc56126fe7a9b33f5850cc37981e763aa/pkg/server/server.go#L149-L190
https://github.com/lf-edge/eve/tree/master/api

The basic concepts of EVE and Kubernetes are very similar. In addition to those concepts, EVE provides node management, and Kubernetes provides
higher-order scheduling options.

From that perspective, it is possible to use native Kubernetes resources:

® Pod for Applnstance workload
* Node for Edge Device

However, doing so brings minimal advantages and some real disadvantages.

1. Kubernetes itself will try to schedule the Applnstance workloads onto nodes, as it thinks they are normal Kubernetes pods. We can prevent that
using Pod node affinity, but it requires additional steps.

2. Kubernetes itself will try to schedule other workloads onto the Edge Devices, as it thinks they are normal Kubernetes nodes. We can prevent that
using node taints and pod tolerations, but it requires additional steps.

3. Kubernetes expects nodes to join in the normal fashion, using either a node certificate signed by an appropriate CA, or a one-time registration
token. These are similar, but not identical, to the process used by EVE. We can get around that by registering the nodes separately, but it is going
against the Kubernetes grain and can lead to issues.

4. Kubernetes expects nodes to be accessible and in regular communication with the control plane kube-apiserver, while EVE expects Edge
Devices to be out of touch, at times for extended periods. This will cause Kubernetes to mark these nodes as unavailable for scheduling, and
eventually remove them. The apiserver-node API is built with cloud assumptions of regular and reliable connectivity.

5. Kubernetes expects nodes to speak the undocumented kubelet API. This includes the internal elements, but also receiving pod specifications.
Using this would require implementing the kubelet API on the Edge Device or somehow convincing Kubernetes that it was.

6. Overloading the Node and Pod resources forces the cluster to be in a confusing state for users. This would make it difficult to deploy an EVE
controller onto a regular Kubernetes cluster, creating barriers to adoption.

For the above reasons, we implement the entire EVE API in custom resources (CRDs) and do not use the native APIs.

For the purposes of edification, we include a table comparing the two approaches here, and include what a native option looks like in an appendix.

The following table summarizes all resources. Original resources - either from the higher-level Adam abstraction or from the native EVE config - are in
black, reused native Kubernetes resources are in blue, custom resources are in green. Where a native resource inherently works well, even the custom
resource column will use the native resource, marked in blue.

EVE resource

Onboarding

Device serial
Device certificate
Edge Device
Global options

Edge Device options

Edge Application Instance

Base OS

Device Config
Network Config
Device Network
Application Network
Volume

Data Store

Content Tree

Scheduling (controller)

Native resource

Node
ConfigMap
Annotations

Pod

Persistent Volume
StorageClass
Image
Deployment

DaemonSet

Custom resources
OnboardCertificate
OnboardCertificateAuthority
DeviceCertificateAuthority
Device
Device property
Device
ConfigMap
Device Annotations
Application
Device Annotation
Device properties
NetworkConfig
DeviceNetwork
Annotations
Volume
StorageClass
Image
ApplicationDeployment

ApplicationDaemonSet

Iltems that require special treatment:

® Device Config - the entire json that is composed by a controller and sent to a device. The core controller reads the other elements and creates
this resource (which can be modified by the end-user). A separate controller reads it and applies it to the device via the API.

* Read-only elements from the Edge Device - log, info, metrics - do not receive their own resources. Kubernetes resources are designed to be
created/modified, remain in relatively stable state and are of small size. They are stored in the Kubernetes backing store, by default etcd, and do
not fit large streaming elements like logs or metrics. When Kubernetes itself enables reading log information from a pod, it does so by leveraging
an element of the control-plane-to-kubelet APl and open real-time streaming of logs.

The streaming elements - log, info, metrics - will stream to the controller according to the current EVE API design, are stored by the controller in its own
datastore, and controller clients open a streaming channel to the controller. There currently is no native construct within the Kubernetes API that knows
how to work with this flow, nor do CRDs have such elements.

Since Kubernetes has no native construct for this, we create a special “streaming” pod and service. This has a Web server and a Service in front of it,
exposing endpoints. We use RBAC to enable access to this pod.

This pod exposes endpoints:

® /edgenode/ <uui d>/ metrics
® /edgenode/ <uui d>/info
® /edgenode/ <uui d>/ | og

The edgenode uuid must match one that is provided by the CRDs. Headers determine if the data should be streaming continuously or only show existing
data, while query parameters determine start and end times and filter parameters.

Design
Although we are creating entirely new custom resources, we follow these rules:

® Follow native Kubernetes semantics as much as possible.

® Where concepts closely parallel those that exist in native Kubernetes resources, we adopt the nomenclature and semantics as much as possible
into our custom resources.

® Where standard annotations already exist to describe a concept, use those annotations.

® Where a native resource is 100% reusable, without mismatches, reuse it.

Extensibility

Various controllers may choose to implement resources in different ways, including adding features to those resources that are not part of the primary
open source specification here.

The mechanism for extensibility in all cases is annotations and additional CRDs.

Annotations

If a controller needs to add functionality to a resource defined in this specification, it should add an annotation that matches its requirement. The annotation’
s prefix must match the controller provider’s unique domain. The prefix eve.lfedge.org is reserved for standard annotations that are used as part of this
specification.

As each controller implementation must implement the control loops for the various resources, including the standard ones, it is up to the specific controller’
s implementation of the control loop to manage the additional annotations.

Other controllers must ignore such annotations.

For example, if a fictitious commercial controller provider named edgesmart, with domain edgesmart . t v, wishes to add features to the DeviceNetwork
resource, it adds annotations using that domain.

api Version: "eve. | fedge. org/vlbetal"
ki nd: Devi ceNet wor k
net adat a:
name: default-ipv4
nanespace: enterprisel
annot ati ons:
ctrl.edgesmart.tv/netwrk-control: 42
spec:
networ kConfi g: default-ipv4d

Custom Resources

http://eve.lfedge.org

Controllers are not limited to the CRDs defined in this specification. Any controller may implement additional CRDs.
In doing so they must not use the apiVersion prefix defined in this specification, but rather must use one that matches a domain owned by them.

For example, if a fictitious commercial controller provider named edgesmart, with domain edgesnmart . t v, wishes to have a new type of device security
configuration, they can create a CRD for it. Notice the api Ver si on field.

api Version: "ctrl.edgesmart.tv/vlbetal"
ki nd: Devi ceSecurityConfig
net adat a:
name: devi ce-security-high
namespace: enterprisel
spec:

Resource Versioning
Every resource type in Kubernetes has a unique identifier of group/version/kind. See the following references:
® https://kubernetes.io/docs/reference/using-api/api-concepts/#resource-uris

® https://kubernetes.io/docs/concepts/overview/kubernetes-api/#api-groups-and-versioning
® https://kubernetes.io/docs/reference/using-api/#api-groups.

Using the above example:

api Version: "ctrl.edgesmart.tv/vlbetal"
ki nd: Devi ceSecurityConfig
net adat a:
name: devi ce-security-high
namespace: enterprisel
spec:

The resource is:
® group: ctrl.edgesmart.tv

® version: vlbetal
® kind: DeviceSecurityConfig

For all cases where we use native Kubernetes resources, we follow the native resource’s group/version/kind scheme.

For all CRDs created here:
® Versions should follow the normal Kubernetes naming scheme of vlal phal, vlal pha2, ... vibet al, vlibet a2, ... v1, v2al phal, ... v2, etc.
® Group must be eve. | f edge. org

® Group for resources defined by third-party extensions, such as commercial controllers, must use their own domain and not reuse eve. | f edge.
org

Unique Resource Identification
Every instance of a resource type is uniquely identified either by name or, for namespace-scoped resources, by namespace/name.
The EVE API, on the other hand, uses UUIDs, normally generated by the controller, to uniquely identify and link resources.

The API defined here follows the Kubernetes convention in using group/version/kind for identifying resource types, and name, with optional namespace, for
uniquely identifying instances of resources.

https://kubernetes.io/docs/reference/using-api/api-concepts/#resource-uris
https://kubernetes.io/docs/concepts/overview/kubernetes-api/#api-groups-and-versioning
https://kubernetes.io/docs/reference/using-api/#api-groups
http://ctrl.edgesmart.tv

It is up to the controller to create UUIDs, link them to specific name/namespace of resources internally, and map them to UUIDs sent to edge nodes via the
EVE API.

Authentication

Authentication leverages normal Kubernetes authentication and authorization paths, whether via static users, client certificates or SSO via OIDC.

Edge Device

The Device is very similar to the native Node, except that specification items that would be loaded into annotations are made part of the core spec.

api Version: eve. | fedge.org/vlbetal
ki nd: Device
nmet adat a
| abel s:
bet a. kubernetes.i o/ arch: and64
bet a. kuber netes. i o/ i nstance-type: eve
bet a. kubernetes.io/os: |inux
kubernetes.io/arch: anmd64
kuber net es. i o/ host nane: eve-device. | abl
kubernetes.io/os: eve
node. kubernetes. i o/instance-type: eve
annot ati ons:
eve. | fedge. or g/ node-type: virtua
eve. | fedge. org/l ocation: "texas/usa"
eve. | fedge. org/activate: true

name: eve-device. | abl
Namespace: enterprisel
spec:

eve-os-version: 8.10.0-kvm and64

certificate:
TFMwd EXx TMUNSVWARKVGA CRFIWE! VTWpKUTBGYWI TMHRMUZ BOQ@s x S| NVTTFI aO5EUVANC] owRj NTVUpCW Bs QLFWUk J UaOpu YTNGh2Ey bEnPWEN3
UW GUMMMWK J SRUZXVFZKTmWVI I XVWIXWZGRVIYZHdj bVJIYU213S1ky MDFi R1J1 VnbwTl FqUl | SR JKZVUx RWEz ZESWRUVEVG STnVr Ovdi MAWF
VK Ux NVRVUNnBI VTl VUVROT1J FMITZUWp2ZDBaVVJWK5Ral1Zl UVRGVI JRcEJl RTFMWROV2FW FI Thl ZhV0ZKc 1kzc ERRVEZUULhkRVWWEL TM | h
UldoM kwNUJVWWZDUWGQ JHZG5 SVkJ CUK VORFFWRNZRMTRuUl VKQ RDd G5 Db W x ZVVz MES WZ3d SRGRXUVZWJUMW EdWOFZRUKhRel | r Tnhi MEZT
YkRNeVI t eEhaVOpx Yl ZJeGRuZEdZal JYYI hk SVAEWrh OVFZMJIOhWbnNGb 31 Ub ThLVWj NVQzcEhkM VNWrpKe GRGSI BZbk pv THk5bFkxbFBaRmxD
Vi NVRW y Sk 1l bk Yy YWD5W | WZFI ZVnB1TVhKVI | YY3dSekZuYUhab1ZYUTVSbES6Yl Fwd1NHeHNXVzh3YzJOULZGRnhk MARy UXpOaVpr MXpkWFpY
UkdOcGFsRI V) Mhz YTFBNVAXZEN MFJZYl ZBNU4zaEdk ROpXT0ZodFVt OXpk REZhUTJOSONua3hi RUpSUORGMLR6 TI NNR2h4 Yk Ux UGNGZEZVz| |
TUnObl dgW dhR3g1YWsOVKk Ox ZHFi WGhFVmlabE5t ¢z NOCbmx OWrp CMLMK ZGhVWHBo Uj FGdI pGZO0t | GBRQWII SaWI He DNI VXh4VWé 1U2NVAFT j RGRI
T1VOWI XRKkVPWGXYT1cx Tl Z6UKRi VFI 2VDFwe U1VZG5 SVMDF3 YK ZSMGFW/TBI WFJI SYLdKUMNYT] FWRXBaVVVRekwwa EVTVGg O Tmp SMWZWk 5Ub XRG
UTBGMVLJ VRKJ ZVTVEVFWQOMINS XVVI XYW CUVFWRK | MVEP CVWVSQ owd HI UVUUOUj BFeFZXUk Zk MFZDQRk 5 MLVWWK 5RVT FDUVA ZNGQwvaFJ XWWJ X
VW CUFFr SI pSVWpJVW 0SVAHRXZTRFpPUl ZaUFI zUj JSV00x Vk RWML Uy b HVKk MGh OUVRCSFEX Tnh SMUS KWAPNS1J GRkZRa04z VI VGQk5FbENRVKZD
VDNKeWQz S| | kbVo1U2xWUFI xaFZi MXB6ZEdoTFUXxZ3ZhRGRt ZVdGa01WsnNi V3RQYzBoM dt MDNORUpNZURGNVFnc HhTREZMULhj M 0z Qkt WMUpH
UkVKc01GU BPWEYx VWA ve nNHVXRaMAk 1 WABWUFRg RXJ VWFJ PV1ds c WNs Yz VXVEpWT Xk 5 bWNDd Ep TWEZFVOVWT FRYZHp Db Fps Y] NWeWFHZFRT VK Ex
UORaSFJVMHZUal JLV] BJeUAXxVTFXW$WI ZKQ NEW FkRU14Vnbsbl ZVOUNUVHN3 TbwQmvXb EJ abWROVERSs e EOWWK ZXRFVLVI ZwWnmVUQn VSRUV2
W/hGUFZgVkdZa3hMIrmkWek 1t WARNREp XUWD5 SVZFNTRURXBWYT V4b2FFSTIW/KZQUKRKSI pGRTJi RMhhUXpNdk9HVK5PVTR3TOFvcn\NWSk|l Ch XML
Uj | 5dGRHbEl UMRR5SVKk VWA 1dq Tkl Va3huYVdoV1Zr Uj ZhbVI x Wk RoMFWAUNRhVGAy UTBsWFXeFJi ek5vZWabVJIUbERhVTVEVEVSREN: VK Zi a2xV
WIALQQVXbEt RoU42Tl daVWUZFhWa1JKW c¢5Q Yz TkZabTVJY1ROSGVRb3RMUz BOTFWIT1J DQkRSVKkpVULVaS| EwRl VSUz BOTFMMWENNPTO= #
base64 encoded

serial: "6654abbcc44"

onboard:
TFMwd Ex TMUNSVWRKVG CRFIWVS! VTWpKUTBGWI TMHRMUZ BO@sx S| NVTTFI a05EUVANG] owRj NTVUpCW Bs Q1L FWLk J UaOpu YTNGb2Ey bEhPWGN3
UW GUMMMWK J SRUZXVFZKTmWI I XVWIXWZGRVIYZHdj bVJIYU213S1ky MDFi R1J1 VnbwTl FqUl | SRI JKZVUX RWEz ZESWRUVEVG: STnvr Ovdi MAWF
VKUxNVRVUTGI VTl VUVROT1JFMITZUWp2ZDbBaVVIWk5Ral1Zl UVRGVI JRcEJl RTFMAWROV2FW FI Tbl ZhV0ZKc 1kzc ERRVEZUULhKRVWWHEL TM | h
UldoM kwNUJVWVZDUWKGQ JHZG5 SVK J CUK VORFFWRNZRMTRuUl VKQ RDd G5 Db W x ZVVz MES WZ 3 d SRGRXUVZWJUWMW EdWOFZRUKhRel | r Tnhi MEZT
YKkRNeVI t eEhaVOpx Yl ZJeCGRuZEdZal JYYI hk SVdEWrhOVFZMJOhWbMNGh 31 UbThLVWWj NVQzcEhkM VNWhpKe GRGSI BZbk pv THk5bFkxbFBaRmx D
Vi NVRW y Sk 1l bk Yy YWD5W | WZFI ZVnB1TVhKVI | YY3dSekZuYUnab1ZYUTVSbES6Y! Fwd1NHeHNXVZzh3Yz JOU1ZGRnhk MARy UXpQaVpr MXpkWFpY
UkdOcGFsRI Vj Mhhz YTFBNVAXZEN MFJZYl ZBNU4zaEdk ROpXT0ZodFVt OXpk REZhUTJOSONua3hi RUpSUORGMLR6TI NNR2h4 Yk Ux UGNGZ&ZVzI |
TUhObl dgW dhR3g1YWsOVKk Ox ZHFi WehFVmLabE5t ¢z NCbmx OWrp CMLMKZGhVWHBoUj FGdI pGZ0t | GBRQWII SaWI He DNl VXh4VWé LTU2NVAFT j RGRI
T1VOWI XRKVPWeXYT1cex Tl Z6UKRi VFI 2VDFwe U1VZG5 SVMDF3YKZSMGFW/TBI WFJI SY1dKUMNYT] FWQXBaVVVRekwwa EVTVGGOTp SMWZWk 5Ub XRG
UTBGMVLJ VRKJ ZVTVEVFWQWUINS XVVJI XYW CUVFWRK | MVEP CVWVSQ owd HI UVUUOU) BFeFZXUk Zk MFZDQRk 5 MLVWVK 5RVTFDUVA ZNGQavaFJ XWWJ X
VW CUFFr SI pSWpJVW 0SVAHRXZTRFpPUl ZaUFI zUj J SVO0x Vk RAWML Uy b HVKk MGh OUVRCSFEX Tnh SMUS KWW NS1J GRk ZRa04z VI VGQk5FbENRVK ZD
VDNKeWQz Sl | kbVolU2xWUFI xaFZi MXB6ZEdo TFUXZ3ZhRGRt ZVdGa01WBnNi V3RQYzBoM dt MDNORUpNZURGNVFnc HhTREZMULhj M 0z Qkt WWMUpH
Uk VKc01GU BPWEYX WA v e mNHVXRaMA LVWABWUFRgRXJ VWFJ PV1ds c WNs Yz VXVEpPWT Xk 5bWNDd Ep TWEZFVOVWT FRYZHp Db Fps Yj NWeWFHZFRT VK Ex
UORaSFIVMHZUal JLV] BJeUAXVTEXW$WI ZKQ NEW FKRUL4Vnbsbl ZVOUNUVHN3 TbwQmvXb EJ abWROVERS e EOWWK ZXRFVLVI ZwWnmvVUQn VSRUV2
WhGUFZqVkdZa3hMrmkWek 1t Wi RNREp XUWD5 SVZFNTRURXBWYT VA4b2FFSTIWKZQUKRKSI pGRTJi RWhhUXpNdk 9HVK5PVTR3TOFv cmNWBk| Ob XML

Uj | 5dGRHbEl UMRR5SVK VWA 1dq Tkl Va3huYVdoV1Zr Uj ZhbVI x Wk RoMFWAUNRhVGAy UTBs WFXeFJi ek5vZWabVJIUbERhVTVEVEVSREN VK Zi a2xV
WIALQQVXbEt RoU42TI daVWUZFhWa1JKW c¢5Q Yz TkZabTVJY1ROSGVRb3RMUz BOTFWAT1J DQkRSVKkpVULVaSl EwRl VSUz BOTFMMWENNPTO= #
base64 encoded
st at us:

eve-os-version: 6.12.2

uui d: EC232B65- 602A- F2A9- 287B- 5095721116E6

addr esses:

- address: 172.19.0.3
type: InternallP

- address: k3d-k3s-default-server-0
type: Hostnane

al | ocat abl e:
cpu: "4"
epheneral - storage: "296591664715"
hugepages-1G: "0"
hugepages-2M : "0"
menory: 16235544Ki
pods: "110"

capacity:
cpu: "4"
ephener al - st orage: 304884524Ki
hugepages-1G : "0"
hugepages-2M : "0"
nmenory: 16235544Ki
pods: "110"

condi tions:

- |l astHeartbeat Ti ne: "2021-11-23T12:57: 092"
last TransitionTi me: "2021-10-10T10: 33: 382"
nmessage: kubelet is posting ready status
reason: Kubel et Ready
status: "True"
type: Ready

nodel nf o:
architecture: and64
boot | D: dc703f d4- 543b- 4801- 96be- 4d6d29af b4le
cont ai ner Runti meVersion: containerd://1.4.9
kernel Version: 5.10.1
machi nelD: "*"
oper atingSystem eve
osl mage: eve
systenUUl D: EC232B65- 602A- F2A9- 287B- 5D95721116E6

A Device can be created in one of two ways:

® User: A user can create a Device resource by adding the resource. It can include a serial, onboard certificate and/or device certificate. When the
device attempts to connect to the controller, it is the controller's onboarding policy that determines how it authenticates, using the device
certificate, onboard certificate, serial, CA on certificates, or any combination of the above.
® Device: A device can self-register, automatically causing a Device resource to be created, if and only if the controller policy allows it. In this case,
either it must be one of:
© Open to all self-registration.
© Allows a device certificate signed by a known CA to self-register.
© Allows an onboard certificate signed by a known CA to self-register.
© Allows a known onboard certificate to self-register.

The resources that enable the following are:
® OnboardCertificate
® Onboar dCA
® DeviceCA

These are all namespaced.

Note that if a user desires to allow a particular onboard certificate and serial combination, and the controller supports it, they simply create the Device
resource, providing the onboard certificate and serial as part of the spec.

Onboard Certificate

Any device presenting this onboard certificate can self-register.

api Version: "eve.|fedge. org/vilbetal"
ki nd: OnboardCertificate
met adat a:

name: onboard-cert-25

nanespace: enterprisel
spec:

certificate:
TFMwd Ex TMUNSVWARKVGAE CRFIWE! VTWpKUTBGYWI TMHRMUZ BOQ@s xSl NVTTFI a05EUVANC] owRj NTVUpCW Bs QL FWUk J UaOpu YTNGh2Ey bEnPWEN3
UW GUMMMWK J SRUZXVFZKTmWVI I XVWIXWZGRVIYZHdj bVJIYU213S1ky MDFi R1J1 VnBwTl FqUl | SRI JKZVUx RWEz ZESWRUVEVG STnvr Ovdi MAWF
VK Ux NVRVUNnBI VTl VUVROT1J FMIZUWp2ZDBaVVIWK5Ra1Zl UVRGVI JRcEJl RTFMWROV2FW FI Thl ZhV0ZKc 1kzc ERRVEZUULhkRVWWEL TM | h
UldoM kwNUIJVWVZDUWGQ JHZG5 SVk J CUK VORFFWRNZRMTRuUl VKQ RDd G5 Db W x ZVVz MES WZ3d SRGRXUVZWJUM EdWOFZRUKhRel | r Tnhi MEZT
YkRNeVI t eEhaVOpx Yl ZJeGRuZEdZal JYYI hk SVAEWrh OVFZMJOhWbnNGh 31 Ub ThLVWj NVQzcEhkM VNWrpKe GRGSI BZbk pv THk5bFkxbFBaRmxD
Vi NVRW y Sk 1l bk Yy YWD5W | WZFI ZVnB1TVhKVI | YY3dSekZuYUhab1ZYUTVSbES6Yl Fwd1NHeHNXVzh3YzJOULZGRnhk MARy UXpOaVpr MXpkWFpY
UkdOcGFsRI V) Mhz YTFBNVAXZEN MFJZYl ZBNU4zaEdk ROpXT0ZodFVt OXpk REZhUTJOSONua3hi RUpSUORGMLR6 TI NNR2h4 Yk Ux UGN&ZZVz| |
TUnObl dgW dhR3g1YWsOVKk Ox ZHFi WGhFVmlabE5t ¢z NOCbmx OWrp CMLMK ZGhVWHBo Uj FGdI pGZ0t | GBRQWII SaWI He DNI VXh4VWé 1U2NVAFT j RGRI
T1VOWI XRkVPWGXYT1cx Tl Z6UKRi VFI 2VDFwe U1VZG5 SVMDF3YKZSMGFW/TBI WFJI SYLdKUMNYT] FWRXBaVVVRekwwa EVTVGg 0 Tmp SMWZWk 5Ub XRG
UTBGMVLJ VRKJ ZVTVEVFWQOMINS XVVI XYW CUVFRK | MVEP CVWVSQ owd HI UVUUOUj BFeFZXUk Zk MFZDQRk 5 MLVWVK 5RVT FDUVA ZNGQwvaFJ XWWJ X
VW CUFFr SI pSVWpJVW 0SVAHRXZTRFpPUl ZaUFI zUj JSV00x Vk RWML Uy b HVKk MGhOUVRCSFEX Tnh SMUS KWAPNS1J GRkZRa04z VI VGQk5FbENRVKZD
VDNKeWQz S| | kbVo1U2xWUFI xaFZi MXB6ZEdoTFUXxZ3ZhRGRt ZVdGa01WsnNi V3RQYzBoM dt MDNORUpNZURGNVFnc HhTREZMULhj M 0z Qkt WMUpH
UkVKc01GU BPWEYx VWA v e nNHVXRaMAk 1 WABWUFRg RXJ VWFJ PV1ds ¢ WNs Yz VXVEpWT Xk 5 bVWNDd Ep TWEZFVOVWT FRYZHp Db Fps Y] NWeWFHZFRT VK Ex
UORaSFJVMHZUal JLVj BJeUAXxVTFEXW$WI ZKQ NEW FkRU14Vnbsbl ZVOUNUVHN3 TbwQmvXb EJ abWROVERSs e EOWWK ZXRFVLVI ZwWnmVUQn VSRUV2
W/hGUFZgVkdZa3hMImkWek 1t WARNREp XUWD5 SVZFNTRURXBWYT V4b2FFSTIW/KZQUKRKSI pGRTJi RMhhUXpNdk9HVK5PVTR3TOFvcnNWSk|l Ch XML
Uj | 5dGRHbEl UMRR5SVKk VWA 1dq Tkl Va3huYVdoV1Zr Uj ZhbVI x Wk RoMFWAUNRhVGAy UTBs WFXeFJi ek5vZWabVJIUbERhVTVEVEVSREN: Wk Zi a2xV
WIALQQVXbEt RoU42Tl daVWUZFhWaA1JKW c¢5Q Yz TkZabTVJY1ROSGVRb3RMUz BOTFWWT1J DQkRSVKk pVULVaSl EwRl VSUz BOTFMMWENNPTO= #
base64 encoded

Onboard CA

Any device presenting a certificate signed by this CA can self-register.

api Version: "eve.|fedge. org/vlbetal"
ki nd: OnboardCertificateAuthority
net adat a:

name: onboard-ceriticate-authority-13

namespace: enterprisel
spec:

certificate:
TFMavd EX TMUNSVWARKVGE CRFIWS! VTVVPpKUTBGVWI TMHRMUZ BO@2s x SI NVTTFI a0O5EUVANC] owRj NTVUpCW Bs QLFWUk JUaOpu YTNGb2Ey bEhPWGN3
UW GUTMMAK J SRUZXVFZKTmQWI I XVWIXWZGRVIYZHdj bVIYU213S1kyMDFi R1II VinbwTl FqUl | SRl JKZVUX RWEz ZESWRUVEVG STvr Ovdi MAWWF
VkUxNVRVUNTB| VTl VUVROT1JFMTZUWp2ZDBaVWJIWk5Ra1Zl UVRGVI JRcEJl RTFMAWROV2FWFI Tbl ZhV0ZKe 1kz c ERRVEZUULhKRWWOEL TM | h
UldoM kwiNUJVWZDUWKGQ JHZG5 SVKJ CUk VORFFWRNZRVWRUUl VKQ RDd G5 DbWjx ZVWz MES WZ3d SRGRXUVZWJUMW EdW FZRUKhRel | r Tnhi MEZT
YkRNeVI t eEhaVOpx Yl ZJeGRuZEdZal JYYI hk SVAEWrhOVFZMJOhWhnNGb 31 Ub ThLVWj NVQzcEhkM VNWrpKe GRGSI BZbk pv THk5bFkxbFBaRmxD
Vi NVRW y Skl bk Yy YWD5W | WZFI ZVnB1TVhKVI | YY3dSekZuYUhab1ZYUTVSbES6Y! Fuwd1NHeHNXVZzh3YzJOU1ZGRnhk MARy UXpCaVpr MXpkWFpY
UkdOcGFsRl Vj Mhz YTFBNVAXZEN MFJZYl ZBNU4z aEdk ROpXT0ZodFVt OXpk REZhUTJOSONua3hi RUpSUORGMLR6TI NNR2h4 Yk Ux UGNGZ&RZVz| |
TUhObl dgW dhR3g1YWsOVKkOxZHFi WehFVmLabE5t ¢z NCbmx OWrpCMLMKZGhW\HBoUj FGdI pGZ0t | @GBROWIJI SaW He DN VXh4VW 1TU2NVAFI j RGRI
T1IVOWI XRkVPWEX YT1ex Tl Z6UKRi VFI 2VDFwe U1VZG5 SVMDF3 YK ZSMGFW/TBI WFJI SYLdKUNNYT) FWOXBaVVVRekwwa EVTVGg 0 Trp SMVZWkK 5 Ub XRG
UTBGMVLJ VRK J ZVTVEVFVWQMQAMINS XVVJI XVWH CUVFWRK T MVEP CVWSQ owd HI UVUUOU; BFe FZXUk Zk MFZDQRk 5MLVWW 5 RVTFDUVA ZNGQwaFJI XVWJ X
VWHCUFFr Sl pSVWpJ VW 0SVAHRXZTRFpPUl ZaUFI zUj J SVO0x Vk RWML Uy b HVK MGh OUVRCSFEX Tnh SMUS KWABNS1J GRk ZRa04z VI VG 5FbENRVKZD
VDNKeWQz S| | kbVo1U2xWUFI xaFZi MXB6ZEdoTFUXxZ3ZhRGRt ZVdGa01WBnNi V3RQYzBoM dt MDNORUpNZURGNVFnc HhTREZMULhj M oz Gkt WMUpH
UkVKc01GU BPWFYx VWA ve nNHVXRaMA 1WABWUFRg RXJ VWFJ PV1ds c WNs Yz VXVEpWT Xk 5bVWNDd Ep TWEZFVOVWT FRYZHp Db Fps Y] NWeWFHZFRT VK Ex
UORaSFIJVMHZUal JLVj BJeU4xVTEXVWWI ZKQ NEW FKRU14Vnbsbl ZVOUNUMHNS TnBWQMVXb EJ abWROVERS e EOWVK ZXRFVLVI ZwMnmVUQn VSRUV2
WhGUFZqVkdZa3hMrmkWek 1t Wh RNREp XUWD5 SVZFNTRURXBWYI VAb2FFSTIW/KZQUKRKSI pGRTJi RWhhUXpNdk 9HVK5PVTR3TOFv cmNWBk1 Cb XML
Uj | 5dCRHEl UMRR5VK VWA 1dq Tkl Va3huYVdoV1Zr Uj ZhbVI x Wk RoMFVWAUNRhVGay UTBs WFXeFJi ek5vZWabVJ UbERhVTVEVEVSREN: VK Zi a2xV
WIALQ@VXbEt RbU42TI daVWUZFhVWA1JKW c5Q Yz TkZabTVJY1ROSGVRb3RMUz BOTFVWI'1J DQkRSVkpVU1VaS| EwRl VSUzBOTFMMENNPTO= #
base64 encoded

Device CA

Any device presenting a device certificate signed by this CA can self-register.

api Version: "eve.|fedge. org/vilbetal"
ki nd: DeviceCertificateAuthority
net adat a:

nane: device-certificate-authority-16

namespace: enterprisel
spec:

certificate:
TFMwd Ex TMUNSWARKVG CRFIWSI VTVWpKUTBGVYWI TMHRMUZ BO@sx S| NVTTFI a05EUVANc| owRj NTVUpCW Bs QL FWUk JUaOpu YTNGb2Ey bEhPWGN3
UW GUMMMWK J SRUZXVFZKTmWVI I XVWIXWZGRVIYZHdj bVJIYU213S1ky MDFi R1J1 VnBwTl FqUl | SRI JKZVUx RWEz ZESWRUVEVG STnvr Ovdi MAWF
VKkUxNVRVUNBI VTl VUVROT1J FMIZUWp2ZDBaVWJIWk5Ral1Zl UVRGVI JRcEJl RTFMAWROV2FWEFI Tbl ZhV0ZKe 1kzc ERRVEZUULhKRVWWBEE TM | h
UldoM kwNUIVWVZDUWKGQ JHZG5 SVk J CUk VORFFWRNZRMTRuUl VKQ RDA G5 DbWix ZVWz MES WZ3d SRGRXUVZWUUMW EdVWOFZRUKhRcl | r Tnhi MEZT
YkRNeVI t eEhaVOpx Yl ZJeGRuZEdZal JYYI hk SVdEWrhOVFZMJIOhWbNGb 3l UbThLVWVj NVQzcEhkM VNWrpKe GRGSI BZbkpv THk5bFkxbFBaRmx D
Vj NVRW y Sk 1l bk Yy YWD5W | WZFI ZVnB1TVhKVI | YY3dSekZuYUhab1ZYUTVSbES6Y! Fwd1NHeHNXVZzh3YzJOU1ZGRnhk MARy UXpCaVpr MXpkWFpY
UkdOcGFsRI V) Mhz YTFBNVAXZEN MFJZYl ZBNU4zaEdk ROpXT0ZodFVt OXpk REZhUTJOSONua3hi RUpSUORGMLR6 TI NNR2h4 Yk Ux UGN&ZZVz| |
TUhCbl dgW dhR3g1 YW OVk Ox ZHFi WGhFVmLabE5t ¢z NCbmx OWip CMLMkZGhVWHBo Uj FGdI pGZ0t | @BRQATI SaW He DNl VXh4VW$ 1U2NVAFI j RGRI
T1IVOWI XRkVPWGXYT1ex Tl Z6UKRi VFI 2VDFwe U1VZG5 SMDF3 Yk ZSMGFW/TBI WFJ SYLdKUMNYT) FWOXBaVVVRekwwa EVTVGY0 Tip SMWZWk 5 Ub XRG
UTBGMVLJ VRKJ ZVTVEVFWQOMINS XVVI XYW CUVFRK | MVEP CVWVSQ owd HI UVUUOUj BFeFZXUk Zk MFZDQRk 5 MLVWVK 5RVT FDUVA ZNGQwvaFJ XWWJ X
VW CUFFr Sl pSWpJ VW 0SVAHRXZTRFpPU ZaUFI zUj JSVO0x Vk RWML Uy b HVKk MGh OQUVRCSFEX Tnh SMUS KWABNS1J GRk ZRa04z VI VGQk5FbENRVKZD
VDNKeWQz S| | kbVo1U2xWUFI xaFZi MXB6ZEdoTFUXxZ3ZhRGRt ZVdGa01WsnNi V3RQYzBoM dt MDNORUpNZURGNVFnc HhTREZMULhj M 0z Qkt WMUpH
UkVKc01GUl BPWFYx WA ve mNHMXRaMAk 1 WABWUFRg RXJ VWFJI PV1ds ¢ WNs Yz VXVEPWT Xk 5b WNDd Ep TWEZ FVOVWT FRYZHp Db Fps Yj NWeWFHZFRTVK Ex
UWORaSFIVMHZUal JLVj BJeUAXVTEXWESWI ZKQ NEW FkRU14Vibsbl ZVOUNUMHN3 TnBwQmVXb EJ abVROVERS e EOWVK ZXRFVL VI ZwVmvVUQn VSRUV2
W/hGUFZgVkdZa3hMImkWek 1t WARNREp XUWD5 SVZFNTRURXBWYT V4b2FFSTIW/KZQUKRKSI pGRTJi RMhhUXpNdk9HVK5PVTR3TOFvcnNWSk|l Ch XML
Uj | 5dGRHDEI UMRRSW VWA 1dq Tkl Va3huYVdoV1Zr Uj ZhbVI x Wk RoMFVWAUNRhVGM UTBsWXeFJi ek5vZWabVIUbERhVTVEVEVSREN: WK Zi a2xV
WIAL1QRVXbEt RbU42TI daVVWuUZFhWa1JKW c5Q Yz TkZabTVJ YIROSGVRb3RMUz BOTFVWAT1J DOk RSVkpVU1VaSl EwRl VSUzBOTFMMENNPTO= #
base64 encoded

Networks

Node Network

Creating an EVE-style device network requires the usage of two CRDs, one for configuration information, which can be reused, and one for the on-device
network itself.

Note that the CRD Net wor kConf i g (below) is very similar in principle to the Kubernetes NetworkAttachmentDefinition.

Network configuration:

api Version: "eve.|fedge. org/vilbetal"
ki nd: Networ kConfig
net adat a:

nane: defaul t-ipv4

namespace: enterprisel

spec:
ip: dhcp
pr oxi es:

- https://10.100.100. 1: 8888

Network instantiation:

https://github.com/k8snetworkplumbingwg/multi-net-spec

api Version: "eve.|fedge. org/vilbetal"
ki nd: Devi ceNet wor k
net adat a:
nane: defaul t-ipv4
namespace: enterprisel
spec:
networ kConfi g: default-ipv4d

affinity:
nodeAffinity:
requi redDuri ngSchedul i ngl gnor edDur i ngExecut i on:
nodeSel ect or Ter ns:
- mat chExpr essi ons:
- key: name

operator: In
val ues:
- labl-nuc
- lab2-nuc

Workload Network

We leverage the cncf standard annotations on the workload to indicate desired networks on the actual workload.

annot ati ons:
k8s.vl.cni.cncf.io/networks: default-ipv4, macvl an2 # nmust exist on edge device

Storage
The EVE semantics for storage are as follows.

Every Appl nst anceConf i g needs one or more Vol une, which in turn are based either on a blank volume or a Cont ent Tr ee. When creating an Edge
App Instance, these are converted either into disk images which are attached to VMs or mount points attached to containers. The first provided Vol une is
the bootable one for VMs or container image for containers. Subsequent Volumes may be read-only or read-write.

® ApplnstanceConfig
© Volumel
= ContentTree
© Volume2
= ContentTree
© Volume3

= Blank
o]

Kubernetes already supports the basic structures - multiple volumes, custom storage volumes and custom storage drivers - with the St or aged ass
resource. We create St or aged ass for blank and each source:

eve-blank: for a blank disk or mountpoint
eve-quay: from container image on quay.io
eve-docker: from container image on docker hub
etc.

api Version: storage.k8s.io/vl
ki nd: StorageC ass
net adat a:
nane: eve-quay
nanespace: enterprisel
provisioner: eve
par aneters:
type: container # nust be supported type: container, http, ftp, etc.
URL: https://quay.io
credential sSecret: quay-creds # Secret enterprisel/ quay-creds

http://quay.io

for blank:

api Version: storage. k8s.io/vl
ki nd: StorageC ass
net adat a:
nane: eve-bl ank
provi sioner: eve
paraneters:
type: bl ank

Credentials secrets, if needed, are affiliated with the StorageClass as cr edent i al sRef .

We define Custom Resources for Image, and then use admissions controllers to validate that the requested resources exist when deploying a Pod that
references them.

api Version: "eve. | fedge. org/vlbetal"
ki nd: I mage
net adat a:
name: gol den- ubunt u- 2004
nanespace: enterprisel
spec:
ref: corpl/ubuntu: 20. 04
storaged ass: eve-quay # nmust match the name of a StorageC ass

type: user # can be any field; a controller may define special nanes; eve-os is reserved

The Image name is then used in a Per si st ent Vol uneC ai m See below.

Workloads

We define a workload called Appl i cat i on for an application to run on an Edge Device. It references all of the necessary elements. Note that it is called
an Appl i cati on, and not an Appl i cati onl nst ance. An instance is something that occurs when deployed on an Edge Device. The Appl i cati onis
the Kubernetes resource describing the intent to deploy.

We reuse standard constructs from native Kubernetes workloads, i.e. pods, as much as possible:
® To determine the node(s) to which an Appl i cat i on is to deploy, we use the standard Kubernetes node affiliation constructs for pods,
specifically nodeAf fi ni t y and nodeSel ect or .
® To determine the Devi ceNet wor k(s) to which the Application should attach, we use the standard networks annotation k8s. v1. cni.cncf.io
/ net wor ks.
® For storage volumes:
© For the boot image, we use the i mage field, which must match a named Image.

© For other volumes, we use Kubernetes Per si st ent Vol uned ai m
® Support for multiple containers enables future packaging of multiple workloads together.

Boot image

The i mage field refers to the name of a defined | mage.

Additional Volumes
For all additional storage volumes, we use Kubernetes Volume resources, specifically Per si st ent Vol uned ai m
For example:

Golden filesystem image stored on FTP site, mounted as a filesystem. Defined using the StorageClass eve-ft p.

api Version: vl
ki nd: Persistent Vol umed ai m
met adat a:
nane: fsclaim
spec:
accessModes:

- ReadWiteOnce # can be ReadWiteOnce, ReadOnl yMany, etc.
vol uneMode: Filesystem # can be Filesystem or Bl ock
resources:

requests:

storage: 83 # this is for the size
st oraged assNanme: eve-ftp
dat aSour ceRef :

group: eve.|fedge.org/vlbetal

ki nd: inmage

nanme: gol den-ubunt u- 2004

Golden VM image stored on FTP site, mounted as a block device. Defined using the StorageClass eve- f t p.

api Version: vl
ki nd: Persistent Vol umeC ai m
net adat a:
nane: ubuntuclaim
spec:
accessModes:

- ReadWiteOnce # can be ReadWiteOnce, ReadOnl yMany, etc.
vol uneMbde: Block # can be Filesystemor Bl ock
resources:

requests:

storage: 8G # this is for the size
st oraged assNanme: eve-inmage
dat aSour ceRef :

group: eve.|fedge.org/vlbetal

ki nd: inmage

nanme: gol den-ubunt u- 2004

Blank disk volume.

ki nd: Persistent Vol uned ai m
net adat a:
name: bl ankdi sk
spec:
accessMdes:
- ReadWiteOnce
vol uneMobde: Filesystem # can be Filesystem or Bl ock
resources:
requests:
storage: 83 # this is for the size
st orageCl assNane: eve- bl ank

Status

The state of an Appl i cat i on, as reported by the controller, is set on the Appl i cati onSt at us. For example:

api Version: eve.|fedge.org/vlbetal
ki nd: Application
net adat a:
nane: app-ubuntu
namespace: enterprisel
annot ati ons:
k8s.vl.cni.cncf.io/networks: w an-local,vpn-corp # nust be known
spec:
nodeSel ector: # reuse this because it is native to many resources
nanme: edge-node-01

status:

key: val ue
key: val ue

The Appl i cati onSt at us field is similar to the Kubernetes PodStatus, albeit not identical. The fields are as follows.
® state: current state of the Application.
® statuses: array of historical states of the application. Each state includes two fields:
O state: the state when this status occurred.
© timestamp: the timestamp when this status occurred.

The states of the application are the ones currently supported by the EVE API. E.g. BOOTI NG, RUNNI NG, STARTED.

Complete Example

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#PodStatus
https://github.com/lf-edge/eve/blob/fbb85e40f957b43f3d047a43250f213b2b50e68f/api/proto/info/info.proto#L171-L219

api Version: eve.|fedge.org/vlbetal
ki nd: Application
met adat a:
nane: app-ubuntu
namespace: enterprisel
annot ati ons:
k8s.vl.cni.cncf.io/networks: w an-local,vpn-corp # nust be known
spec:
nodeSel ector: # reuse this because it is native to many resources
nanme: edge-node-01
cont ai ners:
- nane: frontend
i mage: gol den-ubuntu-2004 # nust be an |Inmge resource
resour ces:
requests:
cpu: 1.0
menory: 256M
storage: 8G
vol uneMount s:
- nmount Path: "/var/ww/ htm "
name: nypd
vol uneDevi ces:
- devicePath: "/dev/sda2"
nane: ubuntu
- devicePath: "/dev/sda3"
name: raw
vol unes:
- nane: pd
persi st ent Vol uned ai m
cl ai mMNanme: fsclaim
- nane: ubuntu
persi st ent Vol umed ai m
cl ai mMName: ubuntucl ai m
- name: raw
epheneral :
vol umeC ai nTenpl at e:
spec:
accessMdes:
- ReadWiteOnce
vol umeMode: Bl ock
resources:
requests:
storage: 8G
st orageC assNane: bl ankdi sk

Scheduling

We define higher-level scheduling constraints, specifically Appl i cat i onDepl oynent, Appl i cati onDaenpbnSet, Appl i cati onSt at ef ul Set . These
are optional; a controller MAY implement them, but is not required to do so.

These follow the same semantics as normal Pod-scheduling Depl oynent , DaenonSet and Appl i cati onSet, except that the spec. t enpl at e. spec
references an Appl i cat i on rather than a Pod.

BaseOS

Setting the baseOS version on a device is performed by changing the spec field eve- os- ver si on. Note that the status field eve- os- ver si on reports
what version actually is installed and running on the device, while the spec field eve- os- ver si on is the desired version.

If the spec field eve- os- ver si on is blank, then there is no specific request; it simply is whatever was installed on the device. The field should be
changed only when requesting a change of the eve-os version on the device. The status field is to be updated when the update is complete.

Controllers may have policies that require an eve-os image be registered on the controller, and possibly in the specific namespace, before allowing it to be
applied to a device. This is a policy question for the controller, and is not covered by this specification.

Appendix A - Native Resources

Edge Device

The concepts of a Kubernetes node and an EVE edge device are very similar, with support for various properties. The flows of adding and managing them
differ.

EVE
EVE’s API for joining a controller uses a combination of three distinct elements from the device:

® Onboard certificate
® Serial
® Device certificate

EVE’s API does not define how the controller will use those, and in what combination. Nor does it define if a certificate will be validated by advance
knowledge of the certificate itself, or by acceptance of the CA that signed the cert, if any.

The controller can use any combination of the above it desires to authenticate and then register the device.
In practice, most controllers provide one or more of the following:

Device pre-allocated and device certificate itself known in advance.

Device pre-allocated and onboard certificate itself known in advance.

Device pre-allocated and combination of onboard certificate and serial known in advance.
Device not pre-allocated; onboard certificate known and accepted for device registration.

Device not pre-allocated; onboard certificate’s signer known and accepted for device registration.

The process is:

1. User: Create a new device, with some combination, depending on controller, of:
a. Device certificate, only available after device boots with physical access
b. Onboarding certificate
c. Unique serial

2. Device: Connect to controller, identify using the above

3. Device now is onboarded

Kubernetes
Any node that can connect to the control plane and prove it has a valid identity is accepted as a worker node. This proof is one of:
® A node certificate signed by an acceptable CA - this CA is valid for all nodes, not just for one node.

® A pre-shared secret token - this token is valid for any node, not just for one node. Kubernetes uses that token to generate a new node certificate
for the node.

Note that these two methods of joining - an existing “node certificate” and a token - are similar in concept to the EVE API “device certificate” and “onboard
certificate”. However, their usage is quite different.

In Kubernetes one normally does not create a node via the API; the node exists by virtue of its joining a cluster. However, it is possible to create one via
the API. It is unclear how the node, upon joining, will reconcile with the existing node resource.

Kubernetes Node Certificate | EVE Device Certificate

Validation = Signed by valid CA Actual certificate in controller
Kubernetes Token EVE Onboard Certificate

Validation = Shared secret Actual certificate in controller

Usage Generate node certificate = Accept presented device certificate

All additional features and properties of the node that are not directly related to the cluster itself, including taints and tolerations, are handled via metadata,
specifically labels and annotations. Since these are semi-arbitrary key-value pairs, anything can be placed here.

We use annotations to determine whether or not to onboard the Node, i.e. its activation status.

When the Edge Device onboards, changed the NodeSt at us to Ready.

Note that the OS, architecture and other descriptive elements of the Node are natively part of NodeSt at us. Nodel nf o.

The following is a sample. Note that the st at us section normally is returned by the device, rather than set. However, it can be set via a client.

api Version: vl
ki nd: Node
met adat a
annot ati ons:
eve. | fedge. org/ node-type: virtua
eve. | fedge. org/ eve-version: 6.12.2
eve. | fedge. org/l ocation: "texas/usa"
eve. | fedge. org/activate: true
eve. | fedge. or g/ net wor k- et hO: defaul t-ipv4
eve. | f edge. or g/ net wor k- et hl: managenent-only
| abel s:
bet a. kuber netes. i o/ arch: and64
bet a. kubernetes. i o/i nstance-type: eve
bet a. kubernetes.io/os: |inux
kuber net es.i o/ arch: and64
kuber net es. i o/ host nane: eve-device. | abl
kubernetes.i o/ os: eve
node. kuber netes. i o/ i nstance-type: eve
name: eve-device. | abl
spec:
providerl D: eve://eve-device.labl
st at us:
addr esses:
- address: 172.19.0.3
type: Internal | P
- address: k3d-k3s-default-server-0
type: Hostnane
al | ocat abl e:
cpu: "4
epheneral - storage: "296591664715"
hugepages-1G : "0"
hugepages-2M : "0"
menory: 16235544Ki
pods: "110"
capacity
cpu: "4"
ephener al - st orage: 304884524Ki
hugepages-1G: "0"
hugepages-2M : "0"
menory: 16235544K
pods: "110"
condi tions
- lastHeartbeat Ti ne: "2021-11-23T12:57: 092"
last Transi tionTi me: "2021-10-10T10: 33: 382"
message: kubel et is posting ready status
reason: Kubel et Ready
status: "True"
type: Ready
nodel nfo
architecture: and64
boot | D: dc703f d4- 543b- 4801- 96be- 4d6d29af b4le
cont ai ner Runti meVersion: containerd://1.4.9
kernel Version: 5.10.1
machi nelD: ""
operatingSystem eve
osl mage: eve
systenUUl D. EC232B65- 602A- F2A9- 287B- 5D95721116E6

We use taints to prevent any normal pods from being deployed to the node. Only targeted EVE pods which have the correct tolerations are deployed to the
node

Networks

EVE has 2 network constructs that simply do not exist in Kubernetes:

® device network: one or more network definitions on each Edge Device
* workload network: the device network to which a workload should connect

For Kubernetes, a network only comes into existence when a workload pod is created. The kubelet (responsible for running the pod):

1. Creates the container, including network namespace

2. Calls CNI, passing it the container network namespace, which:
a. Creates the network interface in the container network namespace
b. Plumbs the network interface to whichever network it desires
c. Allocates and attaches an IP

Node Network

The network for a node is completely out of Kubernetes scope. How the node connects to networks, what it uses its physical NICs for, configuration of
them - DHCP, DNS, WiFi credentials, etc. - is something that is dealt with prior to onboarding the node and unrelated to it.

In EVE, each NIC on an Edge Device is given a specific Network definition via the EdgeDevConfig config with which to work. These must be defined,
otherwise the NIC will be considered unmanaged and not used.

Thus, the node network, or device network, in the Native Resources option is identical to and uses the same CRDs as the official design CRD option.

Workload Network

In Kubernetes, each workload container natively gets two virtual NICs, et h0 and | 0. While | o is connected to loopback, et h0 is connected via CNI to
whichever network is the default on that host.

Once it is connected, it is assumed to be able to communicate with all other workloads and hosts, as well as the larger outside network itself, subject to
network policy rules. The idea of multiple networks to which some workloads are connected and some are not, simply does not exist.

As a result, in Kubernetes, there is no Network object, nor is there native support for multiple network implementations. By extension, workloads have no
native property for “network to join”, because all containers by default join just the loopback | o and et h0 via CNI.

However, CNI is capable of doing almost anything it wants, including adding multiple interfaces connected to the same networks, connecting workloads to

multiple networks, or even to no networks. On the basis of this, there are standards for defining different networks and implementations of CNI, notably the
official reference implementation multus, that know how to use those definitions. Note that these are not built into Kubernetes, but rather take advantage of
CRDs and CNI.

To declare the usage of networks, there are standard CNCF annotations to be applied to the workload that indicate the desired networks:

api Version: vl
ki nd: Pod
nmet adat a:
name: nypod
annot ati ons:
k8s.vl.cni.cncf.io/ networks: default-ipv4, macvl an2 # nmust exist on edge device

We leverage the cncf standard annotations to declare desired networks in EVE as well. However, the implementation is specific to the endpoint. In the
EVE case, we use the existing network structures.

Network ACLs
Within the single flat Kubernetes workload network, there is optional access control using NetworkPolicy.
® If no Net wor kPol i cy is declared, then all workloads (pods) have unfettered access to all other workloads.
® |f even a single Net wor kPol i cy is declared in a namespace, then access to any workloads in that namespace is denied unless explicitly

allowed by a Net wor kPol i cy.

These policies can restrict ingress, egress or both. They apply to workloads based on normal selectors, usually labels. They can allow based on the
remote end’s IP address/range/cidr, port, namespace, label or any combination thereof.

Net wor kPol i cy always is "default deny". Once applied in a namespace, ingress and egress will be allowed only if expressly allowed in a Net wor kPol i cy
. There can be as many Net wor kPol i cy applied as desired.

We do not use Net wor kPol i cy as part of declaring network access for EVE. In the future, we may consider controlling EVE network ACLs with Net wor k
Pol i cy.

https://github.com/k8snetworkplumbingwg/multus-cni
https://kubernetes.io/docs/concepts/services-networking/network-policies/

Storage

Kubernetes supports independent storage as the resources Vol ure and Per si st ent Vol ure. Each Volume can be one of several defined types, but
generally is one of two categories:

® Ephemeral: created with the workload on the node and eliminated when the workload goes away.
® Persistent: backed by some more permanent form of storage, either network or local disk.

The key difference is not network vs local, but persistence beyond the life of a single workload.
EVE does not currently support network-mounted volumes. EVE currently preserves all volumes upon termination of a workload, until explicitly deleted.

The resource structure is identical to that described in CRDs.

Workloads

EVE workloads, defined by Appl nst anceConf i g, map to Kubernetes Pods. Kubernetes also has higher order scheduling constructs - Depl oynent , Dae
nonSet, St at ef ul Set - which we will use as well, but only as optionally supported by the controller.

Kubernetes Pods are not inherently attached to a specific Node. There are constructs in the Pod that can require or prefer it to be on a certain node or
class of nodes, but it is not the default or native way of scheduling.

The specific uniquenesses of Edge Apps are handled using Kubernetes constructs as follows:
® Edge Device selection: nodeSel ect or
® Networking: the standard networks annotation k8s. v1. cni . cncf . i o/ net wor ks is used to list the desired named networks available on the
node. The network is checked for existence by an admissions controller.
® Storage:
© For the boot image, we use the i mage field, which must match a named Image.
© For other volumes, we use Kubernetes Per si st ent Vol umeCl ai m

Storage is defined further below.

Boot image

The i mage field of the Pod spec normally refers to a special URL indicating the registry, repository name, and identifier - tag and/or hash - of an OCI-spec
compliant container image.

We overload the image field of the podspec by providing a special URL that indicates the image it is being taken from. Valid would be:

® quay.i o/ etcd/etcd: 3. 2.1 - currently acceptable normal OCI image
® <j mage- nanme> - reference a local image

In order to indicate that the i mage field references an | nage to be referenced rather than a normal OCI image to be pulled from a registry, we set an
annotation on the Pod:

annotations:
eve.lfedge.org/image-source: local

These are identical to the CRD image solution, except that the annotation is necessary only when using native Kubernetes pod resources.

Additional Volumes

For all additional storage volumes, we use Kubernetes Vol une resources, specifically Per si st ent Vol umeC ai m in the same manner as the CRD
solution.

Examples:

Golden filesystem image stored on FTP site, mounted as a filesystem. Defined using the StorageClass eve-ft p.

api Version: vl
ki nd: Persistent Vol umed ai m
met adat a:
nane: fsclaim
spec:
accessModes:

- ReadWiteOnce # can be ReadWiteOnce, ReadOnl yMany, etc.
vol uneMode: Filesystem # can be Filesystem or Bl ock
resources:

requests:

storage: 83 # this is for the size
st oraged assNanme: eve-ftp
dat aSour ceRef :

group: eve.|fedge.org/vlbetal

ki nd: inmage

nanme: gol den-ubunt u- 2004

Golden VM image stored on FTP site, mounted as a block device. Defined using the StorageClass eve- f t p.

api Version: vl
ki nd: Persistent Vol umeC ai m
net adat a:
nane: ubuntuclaim
spec:
accessModes:

- ReadWiteOnce # can be ReadWiteOnce, ReadOnl yMany, etc.
vol uneMbde: Block # can be Filesystemor Bl ock
resources:

requests:

storage: 8G # this is for the size
st oraged assNanme: eve-inmage
dat aSour ceRef :

group: eve.|fedge.org/vlbetal

ki nd: inmage

nanme: gol den-ubunt u- 2004

Blank disk volume.

ki nd: Persistent Vol uned ai m
nmet adat a:
name: bl ankdi sk
spec:
accessMdes:
- ReadWiteOnce
vol uneMode: Filesystem # can be Filesystem or Bl ock
resour ces:
requests:
storage: 8G # this is for the size
st orageCl assNane: eve-bl ank

Complete Example

api Version: vl
ki nd: Pod
met adat a:
nane: nypod
namespace: enterprisel
annot ati ons:
k8s.vl.cni.cncf.io/networks: w an-local,vpn-corp # nust be known
eve. | fedge. org/i nage- source: | ocal
spec:
cont ai ners:
- nane: nyfrontend
i mage: gol den-ubuntu-2004 # nust be an | nmage resource
nodeSel ector:
name: edge-node- 01
vol uneMount s:
- mountPath: "/var/ww/ htm "
nane: nypd
vol uneDevi ces:
- devicePath: "/dev/sda2"
nanme: ubuntu
- devicePath: "/dev/sda3"

nane: raw
vol unes:
- nane: nypd

persi st ent Vol umed ai m
cl ai mMNane: fsclaim
- nane: ubuntu
persi st ent Vol umed ai m
cl ai mMNane: ubuntucl ai m
- nane: raw
epheneral :
vol unmed ai niTfenpl at e:
spec:
accessMbdes:

- ReadWiteOnce
vol uneMode: Bl ock
resources:

requests:

storage: 8G
st orageC assNane: bl ankdi sk

Scheduling

Since the workload is a native Kubernetes resource Pod, we use the higher-level scheduling resources to schedule multiple: Deployment, StatefulSet, Dae
monSet. These are used in the normal fashion, with the usual node affinities, specifically nodeSelector and nodeAffinity, as described here.

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

	Kubernetes-compatible API for EVE Controller

