
Feature 1766 Limited sql sink connections
Status: Design
Author: Song Gao
Discussion: https://github.com/lf-edge/ekuiper/issues/1766

Motivation
Currently, running the rule like following will create a connection to the certain database sink.

{
 "id": "rule%v",
 "sql": "SELECT a,b,c from demo",
 "actions": [
 {
 "log": {
 },
 "sql": {
 "url": "mysql://root@127.0.0.1:4000/test",
 "table": "test",
 "fields": ["a","b","c"]
 }
 }
]
}

If we create 5000 rules, and it will create 5000 connections to the certain database sink which may crash the database sink due to too many connections.
Thus, we want to limit the connections to the database sink, and make the rules shared the same database connection pool if they have the same
database driver and DSN.

Original Design
For now, each would maintain one SinkNode *sql.DB, when we Open the SinkNode, one *sql.DB would be created and used by
this SinkNode

After the was stopped or deleted, the would beRule SinkNode

func (m *sqlSink) Open(ctx api.StreamContext) (err error) {
 logger := ctx.GetLogger()
 logger.Debugf("Opening sql sink")

 db, err := util.Open(m.conf.Url)
 if err != nil {
 logger.Errorf("support build tags are %v", driver.KnownBuildTags())
 return err
 }
 m.db = db
 return
}

After the was stopped or deleted, the would be Rule SinkNode Closed, so as the would be closed.*sql.DB

func (m *sqlSink) Close(_ api.StreamContext) error {
 if m.db != nil {
 return m.db.Close()
 }
 return nil
}

In this way, each rule will create one connection if it has a sink which may cause lots of connections created due to mass rules.SQL SQL

https://github.com/lf-edge/ekuiper/issues/1766

New Implementation
As the Golang documents said, is a handle of the database connections, that is to say, worked as a database connection pool.*sql.DB *sql.DB

// DB is a database handle representing a pool of zero or more
// underlying connections. It's safe for concurrent use by multiple
// goroutines.

So the idea is to make sharing the same if they have the same driver and the same DSN. We will maintain a Global Pool for the SinkNodes *sql.DB *s
 group by the and the ql.DB driver DSN.

type driverPool struct {
 isTesting bool

 sync.RWMutex
 pool map[string]*dbPool
}

type dbPool struct {
 isTesting bool
 driver string

 sync.RWMutex
 pool map[string]*sql.DB
 connections map[string]int
}

In this way, each will try to get the from the SinkNode *sqlDB Global Pool. Muliti will get the same if they SinkNode *sql.DB
require the same driver and DSN.

The connections in will record the count of the which hold the certain dbPool SinkNode *sql.DB. After the SinkNode
return the *sql.DB, the count would be minus 1. When the count become 0, the would be removed from the *sql.DB
pool as there is no holding it any more, as well as in order to avoid the memory leak problem.SinkNode

After we let mulitple share one SinkNode *sql.DB, we can directly used the following method to control the total
connections to a certain database instance.

db.SetMaxOpenConns(c.Sink.SinkSQLConf.MaxConnections)

In this way, after we created the mass rules to a single database sink, the total count of the connections would be controlled as a fixed number.

Configuration
We will expose the in Configuration as following:MaxConnections

basic:
 sql:
 maxConnections: 100

	Feature 1766 Limited sql sink connections

