Feature 1766 Limited sql sink connections

® Status: Design
® Author: Song Gao
® Discussion: https://github.com/If-edge/ekuiper/issues/1766

Motivation

Currently, running the rule like following will create a connection to the certain database sink.

{
"id": "rul ew",
"sqgl": "SELECT a,b,c fromdenm",
"actions": [
{
"log": {
b
"sglt: |
"url": "nysql://root@?27.0.0.1:4000/test",
"table": "test",
"fields": ["a","b","c"]
}
}
]
}

If we create 5000 rules, and it will create 5000 connections to the certain database sink which may crash the database sink due to too many connections.
Thus, we want to limit the connections to the database sink, and make the rules shared the same database connection pool if they have the same
database driver and DSN.

Original Design

For now, each Si nkNode would maintain one *sql . DB, when we Open the SinkNode, one *sql.DB would be created and used by
this Si nkNode

After the Rul e was stopped or deleted, the Si nkNode would be

func (m *sql Sink) Open(ctx api.StreanContext) (err error) {
| ogger := ctx. GetLogger ()
| ogger . Debugf (" Openi ng sqgl sink")

db, err := util.COpen(mconf.Ul)

if err I'=nil {
| ogger. Errorf("support build tags are %", driver.KnownBuil dTags())
return err

}

mdb = db

return

After the Rul e was stopped or deleted, the Si nkNode would be C osed, so as the *sql.DB woul d be cl osed.

func (m *sql Sink) C ose(_ api.StreanContext) error {
if mdb !'=nil {
return mdb. C ose()

}

return nil

In this way, each rule will create one SQL connection if it has a SQL sink which may cause lots of connections created due to mass rules.


https://github.com/lf-edge/ekuiper/issues/1766

New Implementation

As the Golang documents said, *sql . DB is a handle of the database connections, that is to say, *sql . DB worked as a database connection pool.

I is a database handle representing a pool of zero or more
/I underlying connections. It's safe for concurrent use by multiple
/I goroutines.

So the idea is to make Si nkNodes sharing the same *sql . DB if they have the same driver and the same DSN. We will maintain a Global Pool for the * s
ql . DB group by the dri ver and the DSN.

type driverPool struct {
i sTesting bool

sync. RAMut ex
pool map[ string]*dbPool

type dbPool struct {
i sTesting bool
driver string

sync. RAMut ex

pool map[ string] *sql . DB
connections map[string]int

In this way, each Si nkNode will try to get the *sql DB from the @ obal Pool. Militi SinkNode will get the sanme *sql.DB if they
require the sane driver and DSN.

The connections in dbPool will record the count of the SinkNode which hold the certain *sql.DB. After the SinkNode
return the *sql.DB, the count would be minus 1. Wen the count becone 0, the *sql.DB woul d be renpved fromthe
pool as there is no SinkNode holding it any nore, as well as in order to avoid the nenory |eak problem

After we let mulitple SinkNode share one *sql.DB, we can directly used the follow ng nmethod to control the total
connections to a certain database instance.

db. Set MaxOpenConns(c. Si nk. Si nkSQ.Conf . MaxConnect i ons)

In this way, after we created the mass rules to a single database sink, the total count of the connections would be controlled as a fixed number.

Configuration

We will expose the MaxConnect i ons in Configuration as following:

basi c:
sql :
maxConnections: 100



	Feature 1766 Limited sql sink connections

