
1.

2.

Device-Specific Files and Processes
Introduction
With the growth of devices on which EVE runs, we have seen more "flavours" of EVE. Not just architecture - amd64 and arm64 - but also board-specific, e.
g. imx.

These variants are referred to as "platforms". Different variants of EVE are built by calling:

make eve PLATFORM=<platform>

With some of these variants, we need not only specific kernels, but also specific files to be available on the system. These cannot be downloaded runtime
because:

The data source with the packages might not be available to end devices at boot time;
Even if the data source is available, it might be bandwidth constrained;
The device might need the files very soon after startup.

Thus, the only option is to make these available built-into the platform-specific-variant of EVE.

This document describes a standard method for making these device-specific files available on an EVE build, as well as executing necessary startup
scripts, at both a device level and an EVE-specific services (pillar) level.

File Locations
All device-specific files should be placed on the root filesystem in:

 /opt/vendor/<vendorname>/

Note that, by definition, no 2 platform-specific versions of EVE are the same and built for the same platform. Thus, it is highly likely that in all cases there
will be either zero (no device-specific flavour) or one (device-specific flavour) subdirectory under . For example, an Nvidia Jetson EVE will /opt/vendor/
have , while an imx EVE will have . In theory, we could simply place everything under and /opt/vendor/nvidia /opt/vendor/imx /opt/vendor
avoid another layer of device-name-specific subdirectory. We choose not to do this for two reasons.

We cannot guarantee that in the future we will have a device with files from two distinct vendors; the strunever /opt/vendor/<vendor_name>
cture provides future flexibility.
Analysis and debugging are much easier if it explicitly states what the device the vendor-specific files are for.

The directory can be mounted to any system container that needs it as a mount in . It always will be mounted into pillar as /opt/vendor/ rootfs.yml /
.opt/vendor:/opt/vendor

Populating Vendor Directory

As is in the base OS, which is read-only, it must be populated build-time. We use the section of to populate it./opt/vendor init rootfs.yml

Any device that requires a Board Support Package (BSP) should create a container via a directory in , e.g. lf-edge/eve/pkg/bsp-<vendor> bsp-imx
 (which already exists) or . The contents of the final stage in the Dockerfile be and save files solely to bsp-nvidia must FROM scratch must /opt

 so that the files will be properly placed in the rootfs./vendor/<vendorname>

The actual update of on a per-vendor basis, so that the files can be placed in the base operating system, is covered in the later section "rootfs.yml Upd
".ating rootfs.yml

Long-Running Services
If the device requires device-specific long-running services, for example a fan or other device controller, these are considered system-level services, and
should be added to the section of .services rootfs.yml

The source to such services should create a container via a directory in , e.g. . As this lf-edge/eve/pkg/services-<vendor> services-nvidia
runs in , and therefore in its own container, it can be structured however it wants internally.services

It should avoid duplicating any files already in , instead mounting those in, if at all possible./opt/vendor/<vendor>

The actual update of on a per-vendor basis, so that the the section can be modified, is covered in the later section "rootfs.yml services Updating
".rootfs.yml

Startup Services
If the device requires startup services, it depends upon the nature of the startup service:

system-wide
pillar-specific

System-Wide

System-wide startup services, e.g. initializing a device, should be performed in an container in .onboot rootfs.yml

The source to such startup services should create a container via a directory in , e.g. . As this lf-edge/eve/pkg/onboot-<vendor> onboot-nvidia
runs in , and therefore in its own container, it can be structured however it wants internally.onboot

It should avoid duplicating any files already in , instead mounting those in, if at all possible./opt/vendor/<vendor>

The actual update of on a per-vendor basis, so that the files can be placed in the section, is covered in the later section "rootfs.yml onboot Updating
".rootfs.yml

Pillar-Specific

Pillar-specific startup services, e.g. modifications to user containerd or communications, should be performed by pillar itself.config.toml

On startup, pillar will execute any files found in . Obviously, if no directories exist, or those /opt/vendor/*/init.d/ /opt/vendor/<vendorname>
that do have no subdirectory, or those have no executable files, then nothing will get executed.init.d/

The startup programs should be created as part of . Since those files are in , and are mounted init.d/ bsp-<vendor> /opt/vendor/<vendorname>
into pillar, they will be available to pillar on startup.

Updating rootfs.yml
The above requires both permanent and platform-dependent dynamic changes to .rootfs.yml

Permanent

The only permanent change is to have mounted into pillar. This actually does not require changing , always /opt/vendor:/opt/vendor rootfs.yml
but instead extending permissions in the pillar image. We modify :pkg/pillar/build.yml

org: lfedge
image: eve-pillar
config:
 binds:
 - /lib/modules:/lib/modules
 - /dev:/dev
 - /etc/resolv.conf:/etc/resolv.conf
 - /run:/run
 - /config:/config
 - /:/hostfs
 - /persist:/persist:rshared,rbind
 - /usr/bin/containerd:/usr/bin/containerd
 - /opt/vendor:/opt/vendor # <---- NEW
 net: host
 capabilities:
 - all
 pid: host
 rootfsPropagation: shared
 devices:
 - path: all
 type: a

https://github.com/lf-edge/eve/blob/master/pkg/pillar/build.yml

1.

2.
3.

4.
a.

b.
c.
d.

5.

6.
a.

b.

1.

2.

3.

1.
2.

Dynamic

Dynamic changes to are ones that sometimes are added and sometimes are not. Before we describe the mechanism, we need to describe rootfs.yml
how yml generation currently works, and changes to extend it.

Extending and Standardizing yml generation

rootfs.yml is composed from a template which is modified by files, and then filled in by with the names of rootfs.yml.in .yq parse-pkgs.sh
the dynamic images.

Currently, there is no standard way of running any of the files, although several exist for some variants. The only ones that get executed are for .yq
different hypervisors. The rootfs build process in describes that the final is built as follows:BUILD.md under #generating-yml rootfs.yml

The Makefile includes . This sets the variable inside the make process to a specific docker image tag, based on kernel-version.mk KERNEL_TAG
the and, if set, ZARCH PLATFORM
The Makefile sees a dependency on images/rootfs-$(HV).yml
The Makefile runs tools/compose-image-yml.sh images/rootfs.yml.in images/rootfs-$(HV).yml.in "$(ROOTFS_VERSION)

, i.e. the utility , passing it:-$(HV)-$(ZARCH)" $(HV) compose-image-yml.sh
the base template , i.e. input fileimages/rootfs.yml.in
the template for the specific HV file , i.e. output fileimages/rootfs-$(HV).yml.in
the version string, which is the , hypervisor, and architectureROOTFS_VERSION
the hypervisor

compose-image-yml.sh does the following:
Look for a modifier file ; this is identical to the HV-specific template (2nd argument), but with images/rootfs-$(HV).yml.in.yq .yq
appended to the filename.
If it finds a modifier file, apply it to the base template, and save the result to HV-specific template.
Search through the output file for the string and, if found, replace it with the hypervisor.EVE_HV
If the version argument, which was generated from the git commit, contains the phrase , i.e. uncommitted, then change the dirty PILLA

 in the output file to , which will be used in a later stage.R_TAG PILLAR_DEV_TAG
The Makefile runs , i.e. the utility ./tools/parse-pkgs.sh images/rootfs-$(HV).yml.in > images/rootfs-$(HV).yml parse-pkgs.

, passing it as an input the HV-specific template generated in the previous step , and saving the output to the final sh rootfs-$(HV).yml.in roo
 file. In addition, the variable is passed as an environment variable.tfs-$(HV).yml KERNEL_TAG

parse-pkgs.sh does the following:
Gets the package tag for each directory in pkg/ via , and save it to variable which looks like linuxkit pkg show-tag ${dir} <PKGNA

, e.g. or .ME>_TAG PILLAR_TAG WWAN_TAG
Go through the input file - the HV-specific template - and replace the tags with the appropriate values. This includes the value of KERNEL

 as passed by the Makefile on calling ._TAG parse-pkgs.sh

Notably, look for a file named and applies it to the base template compose-image-yml.sh images/rootfs-$(HV).yml.in.yq images/rootfs.
 to generate . This, in turn, is used as input to .yml.in rootfs-$(HV).yml.in parse-pkgs.sh

This process has the following issue:

It is limited to hypervisors; theoretically, calling it with something else as if it were a hypervisor, e.g. would work, make rootfs HV=something
but then would get stuck at other stages, where really should be hypervisor.HV
It is limited to just one modifier. For example, if we want multiple different variants on multiple hypervisors, there is no way to do that.

We propose modifying as follows:compose-image.yml.sh

Use flagged arguments, i.e. the current mode would be: tools/compose-image-yml.sh -b images/ -m imagesrootfs.yml.in
/rootfs-$(HV). -v "$(ROOTFS_VERSION)-$(HV)-$(ZARCH)" -h $(HV)yml.in
Replace the usage of a single modifer with multiple, e.g. tools/compose-image-yml.sh -b images/ -v rootfs.yml.in
"$(ROOTFS_VERSION)-$(HV)-$(ZARCH)" -h $(HV) images/rootfs-$(HV). .yq images/modifier1. q imagesyml.in y
/modifier2.yq
Update the Makefile to call with multiple modifiers. will largely be "dumb", modifying with compose-image-yml.sh compose-image-yml.sh
as many yq modifiers as passed to it, if they can be found. The Makefile will call pass modifiers for and HV PLATFORM

Modifier for Specific Device Files

With the above generic extension mechanism in place, we can update for specific device files by:rootfs.yml

Add . rootfs-$(PLATFORM).yml.in.yq
When building, call make eve PLATFORM=<device>

Sample modifiers

To ease in usage, the following is a simple file for a platform named . It adds files to , an and long-running ..yq foo init onboot services

.services += {"name": "services-foo","image": "SERVICES_FOO_TAG", "cgroupsPath": "/eve/services/services-foo"} |

.onboot += {"name": "onboot-foo","image": "ONBOOT_FOO_TAG"} |

.init += "BSP_FOO_TAG"

https://github.com/lf-edge/eve/blob/master/docs/BUILD.md#generating-yml
https://github.com/lf-edge/eve/blob/master/kernel-version.mk
https://github.com/lf-edge/eve/blob/master/tools/compose-image-yml.sh
https://github.com/lf-edge/eve/blob/master/tools/parse-pkgs.sh
https://github.com/lf-edge/eve/blob/master/tools/parse-pkgs.sh
http://rootfs.yml.in
http://yml.in
http://rootfs.yml.in
http://yml.in
http://yml.in

Note the usage of to connect independent lines.|

	Device-Specific Files and Processes

